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Abstract

This research in computational electromagnetics addressed the problem of predicting the

near-field mutual coupling effects in phased array antennas. It developed and demonstrated a new

analysis technique that uses the finite element method (FEM) in combination with integral

equations. Due to FEM's inherent ability to model inhomogeneous dielectrics, the new capability

encompasses many radiator types that were not amenable to analysis by previously-existing

methods. The analysis considers the general case of a radiator in an infinite array that is fed

through a ground plane by one of three types of waveguides: rectangular; circular; or circular

coaxial. Accurate feed modeling is accomplished by enforcing continuity, between the FEM

solution and an arbitrary number of waveguide modes, across the ground plane aperture. A

periodic integral equation is imposed at a plane above the antenna's physical structure to enforce

the radiation condition and to confine the analysis to a single array unit cell. The electric field

is expanded in terms of vector finite elements, and Galerkin's method is used to write the

problem as a matrix equation. The Floquet condition is imposed as a transformation of the

matrix, which is equivalent to wrapping opposing unit cell side walls onto each other with a plase

shift appropriate to the scan angle and lattice spacings. The solution of the linear system,

accomplished using the conjugate gradient method, gives the electric field, from which the active

reflection coefficient and active element gain are calculated.

The theory and formulation were used to develop a general-purpose computer code. The

use of commercial CAD (computer-aided design) software for geometry and mesh generation

makes the code geometry independent. It was validated by comparing its results to published data

for arrays of open-ended waveguides, monopoles and microstrip patches. Predictions for

dielectric-clad monopoles were validated by a hardware experiment. Finally, the code was used

to predict the scanning properties of arrays of printed dipoles and printed flared notches.

xiii



PHASED ARRAY ANTENNA ANALYSIS

USING HYBRID FINITE ELEMENT METHODS

L Introduction and Background

1.1. Introduction

A critical problem in phased array antenna design is that of controlling the mutual cou-

pling between individual antennas, or radiators, that comprise the array. Mutual coupling may

reduce antenna efficiency by creating a reflection mechanism that depends on both the radiator

geometry and the scan angle. The limiting case, but one that frequently results from poor

radiator design is scan blindness, meaning that there are one or more angles in the desired field

of view where the reflection is total. Since mutual coupling is inherently a near-field electromag-

netic effect, it is rarely possible to achieve an acceptable radiator design without the ability to

accurately model the near fields. As we attempt to design phased array antennas for new applica-

tions, we often find that existing field computation techniques, most notably moment methods,

do not adequately account for the radiator's topology, feed structure, or dielectric materials. This

is especially true for several broadband radiators that incorporate dielectrics either as structural

support or as electrical loading that reduces their size. Therefore, improved computation tech-

niques are required for use as design tools for broadband phased array antennas.

The objective of this dissertation research was to develop and demonstrate a new analysis

method versatile enough to predict the performance of a variety of radiators. The method is a

hybrid of the finite element method (FEM) with integral equation continuity conditions. The

integral equation for one of three types of waveguides (a summation over dominant and higher-
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order waveguide modes) provides an accurate method for including feed structure effects. The

use of a periodic integral equation to represent the fields above the array enforces the radiation

condition and makes the analysis tractable by confining it to a single array unit cell. A new

periodic boundary condition for finite elements was derived to account for the mutual coupling

across unit cell side walls. The work culminated in a general-purpose computer code that suc-

cessfully predicted the scan-dependent properties of a variety of arrays such as open-ended

waveguides, microstrip patches and printed flared notches. When possible, the results were

confirmed by comparisons to data in the scientific literature that was obtained from either mea-

surements or by other methods of calculation. These validation cases are only a sampling of the

capability of this new analysis tool, which is able to predict the scanning performance of most

array radiators that are in use or proposed for use. Its future use as a design tool is bound to

improve the performance of phased array antennas.

1.2. Phased Array Antenna Electromagnetic Analysis

The most important reason for near-field electromagnetic analysis of phased arrays is

impedance matching, which translates directly into radiation efficiency and low VSWR (voltage

standing wave ratio) to prevent damage to transmitter components in high-power applications.

Paradoxically, radiating elements that are well matched in isolation do not necessarily remain so

when they are arranged in a closely-spaced lattice to form an array. Taking one radiator to be

a reference element, some of its transmit power couples directly into other elements, and some

power from each of the other elements will likewise couple directly into the reference element.

The power returning to the transmitter by way of mutual coupling represents a reflection mecha-

nism. In order to achieve a good active impedance match, each element must, by itself, be

slightly mismatched, so that its self-reflection vectorially cancels the sum of couplings from other

elements. There are numerous methods for controlling these mismatches, such as altering the

2



radiator geometry or including matching circuits in the feed network, but they can only be

effective if an accurate solution for the mutual coupling is available [1:16621.

Most existing solutions for array mutual coupling use the method of moments (MoM) in

conjunction with an infinite array approximation. The approximation makes the problem compu-

tationally tractable since periodicity conditions may be used to restrict the analysis to the space

around a single radiator, called a unit cell. It is a reasonable approximation for large arrays, and

it is also used as part of the present method.

1.3. The Need for Improved Analysis Methods

There are several trends in antenna development that are causing array element designs

tc outstrip the available analysis methods. One is the desire to use electronic scanning antennas

in applications such as airborne satellite communications and airborne surveillance radar, in which

the antennas' intrusion, protrusion and weight must be minimized [21. Another is the growing

trend toward millimeter wave frequencies, leading to dimensions so small that it is impractical

to fabricate and assemble and array one element at a time. Yet another is the potential cost

reduction of using printed circuit and integrated circuit, or monolithic, fabrication [3].

The radiating elements that are proposed to meet these new requirements often include

irregularly-shaped conducting surfaces in combination with inhomogeneous dielectrics. An

example, shown in Figure la, is the "flared-notch" element [4]. The dielectric card is clad with

metal on the back side except for a slot that opens progressively wider near the top. The front

side is bare except for a microstrip feed line. It is shown here fed from a coaxial transmission

line that penetrates a ground plane, but the feed line could be microstrip as well. A recent MoM

analysis of this radiating element in the phased array environment used the simplification shown

in Figure lb: the dielectric is ignored; and the feed line is replaced by an delta-gap source across

the slot 151. It is clear that this model cannot predict the effects of high-dielectric-constant sub-

3



DIELECTRIC
FLARED NOTCH

DIDELTA GAP
SOURCE

GROUN6
PLANE

COAX-MICROST RIP-
SLOTLINE FEED

(a) (b)

Figure 1. Flared Notch Radiator: (a) Printed Circuit Fed from Coaxial Waveguide;
(b) Geometry Model for Method of Moments

strates (monolithic antennas commonly use Gallium Arsenide, whose relative permittivity is 12.8-

12.9) or of radiation from the feed structure.

A second example, shown in Figure 2a is a dipole radiator metallized on one side of a

dielectric card, with a balun feed metallized on the other [61. The dielectric may be trimmed or

notched at each end of the dipole to reduce the mutual coupling between elements located at

intervals along the card. Figure 2b is the structure actually modeled using an innovative MoM

approach. In this case, the presence of the dielectric was taken into account by using a Green's

function for a parallel-plate region periodically loaded with dielectric slabs 171,18]. Some results

of that work confirm that the dielectric has a pronounced effect on the wide angle scanning

properties. On the other hand, the sweep-back of the dipole arms, which is known to be impor-

tant for achieving a good impedance match at wide scan angles 191, is neglected. Also, the feed

is modeled as a simple delta-gap source, neglecting the effects of the balun.

4



DIELECTRIC R

RADIATOR DELTA GAP
A 'SOURCE

FEED LINE
AND BALUN -

GROUND Ž" -

PLANE 
- >

COAXIAL FEED

(a) (b)

Figure 2. Printed Dipole Radiator: (a) Actual Geometry with Microstrip
Balun and Coaxial Feed; (b) Method of Moments Model

PARASITIC ELEMENT SUBSTRATE LAYERS• llll• aPATCH RADIATOR __•

v (a)

COAXIAL FEED GROUND PLANE

(b)

Figure 3. Stacked Patch Radiator with Coaxial Feed: (a) Two Continuous
Substrate Layers; (b) Non-continuous Top Substrate
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A third and final example is shown in Figure 3a, It is essentially a rectangular microstrip

patch, fed through the ground plane from a coaxial cable. The second "proximity-coupled" patch

on top of the upper dielectric layer is intended to increase the overall bandwidth beyond the 5%

[101 that is typical of a single patch. The array properties of this radiating element have been

predicted using MoM Il1], with the coaxial feed represented by a frill current source. The mo-

ment method approach for this, and other microstrip problems, relies on using Green's functions

for layered, infinite dielectric slabs. Those Green's functions do not apply to situations such as

Figure 3b, in which one or both substrates are not continuous layers.

These three examples illustrate the deficiencies in previous mutual coupling computation

techniques; and the corresponding new capabilities that have been obtained with the hybrid finite

element method: (1) multiple dielectrics with arbitrary shape; (2) irregular conducting surfaces

that support currents flowing in arbitrary directions; and (3) detailed feed structures. A further

objective that is also important is geometry independence: Whereas each of the three examples

discussed above used a specialization of MoM to the particular structure and required develop-

ment of a separate computer code, the present work resulted in a code that can model all three,

and many others as well.

1.4. Methods in Computational Electromagnetics

The techniques of "classical electromagnetics" provide formalisms for casting physical

problems as mathematical boundary value problems. Since the solutions that may be obtained

by the purely analytical methods are restricted to canonical geometries, most electromagnetic

design problems of current interest require the use of numerical methods to obtain a solution.

The techniques of "computational electromagnetics" (CEM) are formalisms for mapping boundary

value problems from continuous to discrete forms so that they may be solved by computer.

Therefore, the objective of CEM is to produce tools, i.e. computer codes with which device
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designs may be evaluated without resorting to hardware experiments. The tools must have four

essential characteristics: effectiveness, reliability, efficiency, and versatility. In other words, they

must consistently obtain correct results at reasonable cost for a variety of problem geometries.

The previous section showed that the shortcomings of current methods for phased array near-field

analysis are mainly in effectiveness (due to simplifications of the actual problem geometry) and

versatility (due to the restriction of each to very specialized geometries).

The requirement for effectiveness limits the search for new techniques to integral equation

(MoM) and partial differential equation (PDE, finite element and finite difference) methods. The

former is by far the most well advanced for solving antenna problems because the integral

equations incorporate Green's functions that satisfy radiation conditions, forcing all valid solutions

to decay to zero with increasing distance from the field sources (equivalent currents). The PDE

techniques, on the other hand, more easily account for dielectric inhomogeneities for which

Green's functions are not available. The finite element method is more appropriate for devices

with irregular, especially curved surfaces, because it may use irregular grids, or "meshes," while

the finite difference method typically uses regular, Cartesian grids. A similar need to model

objects that include inhomogeneous dielectrics has led researchers in electromagnetic scattering

to consider hybrids of the finite element method with integral equation methods [121-f14]. By

surrounding the object with an imaginary boundary in free space surrounding the scatterer, the

finite element method may be used to solve for the fields inside the boundary as though it were

an enclosed region, and an integral equation is imposed to ensure field continuity across the

boundary. Hence, the hybrid finite element method (HFEM) appeared to be a likely choice for

the phased array radiator problem as well, provided that a means could be found for implement-

ing periodic boundary conditions. The success of that implementation and a demonstration of its

benefits are some of the important results of this dissertation research.
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The next chapter will pi -,ent an overview of the solution approach, which involves three

novel continuity conditions for the three dimensional finite element problem. The detailed analy-

ses and derivations constituting the problem "formulation" (its description as a mathematical

boundary value problem, and its reduction to a linear system of equations ) are given in Chapters

III-VI. They are intended as documentation, or as a trail for the reader who would attempt a

similar solution to related electromagnetic problems. They are not essential to understanding the

results of validation tests and hardware experiments presented in Chapters VII-X.

This hybrid finite element method is a frequency-domain approach. Hence, throughout

this document, all field and current quantities are understood to be time-harmonic, with the

complex exponential eJt time dependence suppressed.
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II. Solution Overview

2. 1. Problem Description

The generic problem geometry is shown (cross-section) in Figure 4. The "interior

region," denoted 0), is a section of an array unit cell. It is bounded by the surface denoted r',

whose bottom wall is the ground plane plus the feed waveguide aperture. The top wall, called

the "radiation boundary," is an imaginary constant-z surface at an arbitrary position in free space

above the radiator structure. The side walls conform to the unit cell boundaries. For example,

Figure 5 shows two arrays (stacked-patch radiators), one with a rectangular lattice and the other

with a triangular or "skewed" lattice. In each case the unit cell is a cylinder extending

indefinitely in the +z directions. Its side boundaries are chosen to satisfy the periodicity

conditions (discussed in Chapter VI and Appendix C). The region Q is formed by simply

truncating the unit cell at some plane above the array.

z

INFINITE ARRAY

I RADIATION BOUNDARY
---------- ---- ----------. . . . .. . . . . . . . .- -_- -. . . . .i . . . . z " h

SIDE WALL

UNIT CELL ago
GROUND z 0

PLANE

DIELECTRICS CONDUCTORS

WAVEGUIDE APERTURE

Figure 4. General Phased Array Radiator Problem
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LAYERS

x GROUNDy
PLANE

UNIT CELL

DIELECTRI

LAYERS

xK
GROUND

LAYERSLANE

Figure 5. Unit Cells (Stacked Patch Arrays): (a) Rectangular Lattice,
(b) Skewed (Triangular) Lattice
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1) may now be viewed as a cavity containing any number of material regions, each with

distinct constitutive parameters E and 1L, which may be complex (lossy). This research will only

consider linear and isotropic materials. There may also be voids within 0 that represent the

interiors of T rfectly conducting obstacles. Infinitely thin wires and open surfaces such as patches

and strips are also permitted.

2.2. The Matrix Equation

The solution to the boundary value problem represented by Figure 4 is the electric field

E(x,y,z) everywhere inside 9 and on F. HFEM will find an approximation to E in terms of

piecewise-continuous expansion functions weighted by a column vector of coefficients, denoted

E. Those coefficients are the c,!uti'n to the matrix equation

[ SEE , SEJ ]E = E (I)

Complete explanations of the terms in this equation are given in succeeding chapters, but briefly:

The matrix SEE is sparse, representing local interactions between field sources inside g'; SEJ

represents interactions between field sources on the nonconducting parts of r through integral

equations. The right side vector Einc is due to a field incident on F from the feed waveguide.

The performance parameters that are of greatest interest are the active reflection coefficient and

active element gain, which may be found directly from those parts of E on the waveguide

aperture and radiation boundary, respectively.

2.3. Finite Elements

The region 01 will be subdivided into small volume elements. Four-sided tetrahedra were

chosen because they conform more readily to irregular and curved surfaces than other popular

choices such as six-sided "bricks." The volume elements are often referred to as cells, and their

four vertices as nodes. The collection of tetrahedra is called the mesh. Material properties will
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be assumed constant within each cell. Figure 6 is an example mesh (one quadrant of a thick disk)

that illustrates an important flexibility of tetrahedron meshes: the mesh density may be varied

within an object. Although 10-20 nodes per linear wavelength is usually an adequate sampling

rate, one may wish to sample finer in regions where the field is expected to have singularities;

or in order to capture fine details of an object's geometry.

Finite elements are polynomial functions that are defined over individual cells, or sub-

domains. Chapter III will give a more detailed description of the linear, vector finite elements

used in this work. These functions are used as expansion and testing functions for Galerkin's

method, which is the mechanism used to reduce the boundary value problem to a matrix problem.

2.4. The Weak Form Functional

The principal distinction between finite element and moment methods (as the terms are

commonly used within the electromagnetic research community) is that the former is applied to

variational statements, while the latter is applied to integral equations f15:161. The variational

(a) (b)

Figure 6. Subdivision of a Volume Region into Tetrahedra (one quadrant of a disk):
(a) Interior Edges Visible; (b) Interior Edges Hidden
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statement used here is the weak form of the vector wave equation. The time-harmonic form of

the wave equation for electric fields in a source-free, inhomogeneous region is:

VXIVXE-kArE = 0 (2)
Ar

A functional is constructed by taking its inner product with a trial function, W, then applying a

Green's identity (see Appendix A):

F(E= J Vx *.vxW E dv + -kOlioJW*.Jds=0 (3)

This is called a weak form because the Green's identity has shifted one derivative from the field

E to the trial function W, thus weakening the differentiability requirement on E. This functional

has three difficulties that integral equations do not:

(a) the Helmholtz equation specifies the curl only and not the divergence. There-

fore, extra effort is required to enforce the divergence condition V- (EE)=0.

(b) Boundary conditions are not included. Thus, although (3) is not restricted to

a class of problems with uniform boundary conditions, extra effort is required to

ensure the satisfaction of all boundary conditions that are present.

(c) The radiation condition is not enforced.

Chapter III will discuss how (a) and (b) are resolved by choosing vector expansion functions that

obey the divergence condition and that satisfy boundary conditions at both j,• w, 1 conductors and

dielectric interfaces. Chapters IV and V show how the radiation condmin , 1 rced by substi-

tuting an integral equation for J into the boundary integral of (3). In t, ,t the waveguide

aperture, that integral equation will take the form of a sum over waveguide modes. In the case

of the radiation boundary, it will be a periodic integral equation. which may be written as a sum

over spectral domain sample points, i.e. Floquet modes.
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The last detail to be addressed is the problem of enforcing periodicity conditions at the

unit cell walls. The implementation is straightforward in theoretical terms. It has been accom-

plished by others for two-dimensional grating problems [ 161. Chapter VI discusses its extension

to three dimensions and the means for implementing it algorithmically: The matrix is first

constructed as though the unit cell walls are open circuit boundaries; then the matrix is modified,

creating some new terms and removing others. The effect is as if opposing mesh side walls were

folded around onto each other with a phase shift appropriate for the array scan angle and the unit

cell dimensions.

2.5. Development Approach

Figure 7 illustrates a generic "cavity array problem," a somewhat simpler problem than

the "general array" problem of Figure 4. It is still a phased array antenna, but the radiators are

separated from each other by conducting walls. Their mutual coupling is only through apertures

in a conducting ground plane. This is appropriate to a restricted class of radiators such as open-

z
UNIT CELL

VR' BOUNDARY

z-d ----- GROUND PLANE

PERFECTLY
\//_=- CONDUCTING

/ CAVITY

WEGUIDE ,,DIELECTRICS
, AND/OR

r•W 
CONDUCTORS

Figure 7. A Generic Cavity Array Problem
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ended waveguides, horns and slots. This problem embodies all the same aspects as the general

array problem except for the periodicity conditions on the unit cell side walls.

Figure 8 is a further simplification, which will be referred to as the "RF device problem."

The interior region is again a cavity with perfectly conducting walls, as in Figure 7. But here,

both inlet and outlet apertures lead into waveguides. This embodies all of the aspects of the

cavity array problem except the periodic integral equation.

The RF device problem was the first stage of this research. It provided validation of the

approach and implementation for the 3D finite elements and the waveguide aperture continuity

conditions. A detailed summary of that work is given in a separate report [17]. The second

research stage replaced the outlet waveguide modes with Floquet modes in order to solve the

cavity array problem. The third and final stage in the algorithm and code development included

the periodicity conditions needed for the general array problem. Each of tie three solutions was

validated by comparing computations to results published by other authors, obtained by methods

other than FEM (measurements, mode matching, method of moments, etc.).

FF
"rA _ _ _

WAVEGUIDE A WAVEGUIDE B
CAVITY

z=O z-d

Figure 8. A Generic Passive RF Device Problem
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Il. Interior Region Problem - Finite Element Formulation

The first part of the problem formulation is the application of the finite element method

to the interior region 17. This will ignore, for the time being, the field continuity conditions on

its enclosing boundary. This chapter will discuss the variational form of the problem and the

restrictions it imposes on the electric field approximation. It then discusses the nature of the

vector finite elements and shows that they satisfy the restrictions. Finally, it gives the derivation

of the interior matrix terms using Galerkin's method, and their reduction to algebraic expressions

using coordinate transformations local to each tetrahedron.

3.1. The Variational Statement

The boundary value problem consists of the operator equation (the vector wave equation),

boundary conditions and applied forces. The solution is a function, the electric field, defined

throughout Q. The finite element method attempts to solve a variational equivalent of the

problem.

The variational statement consists of a functional (usually an integral containing the

unknown function in the integrand) and admissibility restrictions on the function [ 18]. Admissible

functions are those that are in the domain of the functional and satisfy the boundary conditions.

Appendix A discusses the two forms of functionals commonly used for vector electromagnetic

problems and gives the rational for selecting the weak form (3).

There are three admissibility restrictions. First, the divergence condition V, (EE)=O

is necessary to ensure a unique solution since the operator equation only specifies the curl of E.

Second, the tangential electric field must vanish at the surface of perfect conductors, i.e.

fi×E=0 . Last, at interfaces between dielectrics, tangential E is continuous, but normal E is

discontinuous, i.e. ft'(f 1E)=d '(f 2E2) . It will be shown that these three restrictions are
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satisfied through a careful choice of the expansion functions used to approximate E.

3.2. Scalar vs. Vector Finite Elements

The most conventional finite elements are linear functions defined relative to the mesh

nodes. Within a single tetrahedron there are four such functions, one per node. Each finite

element is defined within a single tetrahedron and is zero everywhere else. Scalar node-based

expansion functions for E are assembled from the finite elements. For example, in Figure 9,

there are eight tetrahedra surrounding the central node. The scalar expansion function is defined

over all eight cells, is equal to 1 at the center node, and goes linearly to zero at all surrounding

nodes. In order to represent a vector field, one choice is to expand it in terms of these scalar

functions with vector coefficients:

M
Et E -e, s s(x,y, z) (4)

s=1

0.01,

.25

4t = .50 "

.75

1.0

"NODE S

Figure 9. A Three-Dimensional Liiear Expansion Function: (left) Eight Tetrahedra Surroun-
ding a Node; (right) Linear Finite Element with Surfaces of Constant Function Value
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where M is the total number of nodes in the mesh. However, this expansion has three important

disadvantages:

(a) The boundary conditions at perfect conductors are difficult to enforce, espe-

cially at edges and tips where the surface normal is undefined.

(b) At dielectric interfaces where E is discontinuous, the electric field normal to

the interface is discontinuous, while the tangential components are continuous.

But if a node s is on such an interface, (4) implies that all components are contin-

uous. Hence, a node-based formulation will not accurately predict the field

behavior at dielectric boundaries [19].

(c) It does not generally satisfy the divergence condition. Failure to enforce the

condition will lead to spurious non-physical solutions 1201. It has been widely

presumed that the penalty function method could be used, but Boyse et. al. point

out that penalty methods are only justified for positive definite functionals [211,

and (3) is indefinite.

Many of these difficulties can be circumvented by using vector finite elements in an

expansion of the form

N
£ = e.,ý(xy,z) (5)

s=1

where now s is an edge index and N is the number of edges in the mesh. The particular form

of ý, sometimes attributed to Nedelec 1221 that has been used most successfully is 1231,1241

4s = Lifi Vfj -4 VA ) (6)

where fi and f are the linear scalar finite elements defined for the nodes i and j bounding edge

s. Lii is the length of the edge, and is included as a scaling to ensure that the component of .

tangential to the edge is a unit vector. Figure 10 illustrates the two dimensional version of this
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2 FUNCTION DEFINED
RELATIVE TO THIS EDGEf

3 -Vf 2

(a) (b)

Figure 10. A Two-Dimensional Vector Finite Element: (a) Direction (arrow length) indicates

function magnitude); (b) Constituent Linear Scalar Finite Elements

vector function and the scalar finite elements from which it is constructed. This choice resolves

all three of the difficulties associated with the node based formulation since: (a) it allows a

simple yet effective means for imposing conductor boundary conditions; (b) it enforces continuity

of tangential field, but allows the normal field to be discontinuous at element boundaries; and (c)

it is free of divergence since

(7)
-fV 2f'.-f'.V2f,=0

(fi and fj are linear, so their second derivatives are zero).

The principal disadvantages of the vector elements are algorithmic: (a) most CAD

software generates a node listing that must now be converted to an edge listing; (b) the direction

of each edge vector must be accounted for; and (c) the calculated fields must be converted back

to vector components for output or display. One further disadvantage that has been cited (191,
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[231 is that the number of unknowns is larger since there are typically 4-5 times as many edges

as nodes in a tetrahedron mesh. Hence, there may be 1/3 - 2/3 more unknowns. This estimate is

excessive for three reasons: First, it assumes three unknowns per node, but four are actually

necessary to achieve an effective node-based formulation, using vector and scalar potentials [251.

Second, there are no unknowns associated with edges on perfect conductors, since the tangential

electric field must be zero, whereas all three components of the electric field at a node on a

conductor could be nonzero. Third, the node-based formulation may require finer sampling near

conducting edges and corners to compensate for the uncertainty in the direction of fi.

Furthermore, the connectivity between edges is lower than for nodes, typically by a factor of 2,

and hence the number of matrix entries is smaller by the same factor.

Given the above facts, the vector finite elements are clearly the better choice. The next

section will show the derivation for the interior matrix terms using the expansion (5) in

conjunction with Galerkin's method.

3.3. Discretization via Galerkin's Method

Galerkin's method is a specialization of weighted residuals, in which the trial functions

are the same as the expansion functions. Its use is permitted when the expansion functions are

in the admissible space of both the direct and the adjoint problem, as discussed in Appendix A.

Substitution of the series expansion for electric field into the operator equation leaves a

residual error R = L(E)-L(E) where E is the series approximation to E and L is the linear

operator Vx #r1 VX + r6r]" The inner product of R with a trial function W is

jRW*dv = F(E)- IV e[-J V×X V XW*(
n t• (8)

EAr 'W*jdv +jkoI o jJ J -W*ds
F

This includes the original functional since (L(E),W)=F(E), but since F(E)=O from (3). The

20



weighted residuals procedure forces (R,W)=0 in order to solve for the coefficients e;, giving

0= W (9)
t= 1

0l P

Substituting each ý., one at a time, for W gives N equations:

et[r I-VXý-k t d k~oJ d (10)

The order of summation and integration in (10) n.ay be reversed since the coefficients e; are finite

and the functions it and Vx~t are bounded. Then (1( defines a system of N equations in the

N unknowns et. The volume integral terms are the entries in the matrix SEE from (1):

SEE ['- V Xý (11)'_ r
Os,

The expansion and testing functions are each defined only on the collection of tetrahedra adjacent

to the corresponding mesh edges. Hence the integration is over f1st, the collection of cells shared

by edges s and t. These matrix equation terms will be computed by carrying out the integrations

in (11) analytically using a transformation to homogeneous coordinates.

3.4. Homogeneous Coordinates

The homogeneous or simplex coordinates are defined locally within each tetrahedron

126:266-2741. There are four coordinates t I , t2, t 3 and t4 , but one of the four can always be

eliminated using the relationship t1 +t 2 +t 3 +t 4 = 1 . The coordinate ti of a point anywhere within

the cell is the distance to node i from the opposing face, normalized to the cell height along that

direction. Hence ti is equal to one at node i; and zero at all other nodes as well as everywhere

on the opposing face. The transformation is given in terms of a 4x4 matrix [T], whose elements

are the 16 cofactors of the following matrix, U, made up of the cell vertex coordinates:
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1 x1  yl z1

1 X2  Y2 Z2 (12)

1 x3  Y3  z3

I x4  Y4  z4

For example, T22 = (Y3z4-Y4Z3) +Y1 (z3-z4) +zl(y 4-Y3) The four homogeneous coordinates are

given as follows in terms of x,y,z:

tl 1

t2 [T] x (13)

t3 6V y

t4 j z

where V is the tetrahedron volume. These coordinates are especially convenient since the scalar

finite elements become functions of one coordinate only:

fi(x,y,z) = t I[T¾i +xT 2 +yTi3 +zTi4 ] (14)

VA = [.'Ti2 +YT 3 +2TT41 (15)

and the limits of integration are simplified. Most terms of (11) will reduce to integrals of prod-

ucts of two scalar functions, which have the simple result:

I 1i-ti -t 2

flfij dxdydz = 6V JdtI J dt2 I t tjdt 3 = +6(16 ij) (16)
cell 0 0 0

where bij is the Kronecker delta and i and j may take on any values between I and 4.

3.5. Volume Integral Computations

The volume integral computations are carried out by visiting each cell once and adding
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its contribution to SEE for every pair of edges that are part of the cell, excluding those edges that

are on perfect conductors. Let ij and m,n be the node indices of the endpoints of edges s and

t, respectively, I <i,j,m,n•4, i;ej, m;n. s and t are global indices, but ij,m and n are local

indices defined relative to a cell. Using the identity Vx(aVb)=aVxVb+VaxVb and noting that

the second derivatives of the linear functions f are all zero,

Vx = 2 L, x Vfj (17)

Vx(t = 2LtVfm x Vfn (18)

Considering the first term of (11) separately, note that the gradient terms (17) and (18) are con-

stants and may be taken outside the integral. Thus, cell k's contribution to the first volume

integral is

EEl 4Vk
Ss.(k) - LSLtVf X Vfj Vfm X Vfn

4 VkLs Li4- st[ (Ti~3T; 4 -T 4 T 3 )(Zm3rn 4 -1Tm4 Zn3 ) (9

Ar(6Vk )4  (19)
" (Ti4Tj2 - Ti2Tl4)(Zm4Zn2 - n 2T2n4 )

"+ (T2 - Ti372)(T72 Tr 3 -rm 3Trn2 )]

where vk is the volume of cell k. The cell's contribution to the second volume integral is

EE2 ,2
S = [fifmvfj Vfn -f"f..VA -Vf (20)

-fi f.Vfj Vf,. + fjf,, Vfj - Vfm ]dYv

Again, the gradient terms are constants, so this may be evaluated using (16). The result is
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2 4
EE2 k0ErLsLg 4

S.t(k) = -20Vk • [( 1 
+Uim -(I +(j,2)TiT(1)

- (1 + bid )TmT + (0 t6.)TT1 I

The submatrix SEE in (1) is the sum of SEE' and SEE2. Equations (19) and (21) are a closed-

form evaluation of the volume integral (11), written as an algebraic expression in terms of the

geometry of a cell and the constitutive parameters contained within it.

This completes the discussion of the interior finite element solution. The next two

chapters discuss the integral equations for the regions exterior to U. Those integral equations will

provide expressions for J in terms of the transverse E on the bcundary.
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IV. Waveguide Continuity Conditions

This chapter develops the integral equations for the RF device problem illustrated in

Figure 8. These equations apply to the two waveguides entering and leaving the cavity region,

and are in the form of sums over waveguide modes. The derivation presented here is generic,

applying to any type of waveguide for which eigenmode solutions are available. Appendix B

gives specialized expressions for rectangular, circular and circular coaxial waveguides. Using

the mode sum form, the computation of matrix entries will be shown to reduce to inner products

of the mode functions with vector finite elements.

4.1. Combined-Source Integral Equation and Modal Expansion

The derivation of the integral equation uses the equivalence model shown in Figure 11.

The interior problem sees zero field outside the cavity region and equivalent electric and magnetic

currents on the open aperture. Those apertures are assumed to be planar and located in the end

walls of the two waveguides. They do not necessarily extend across the entire waveguide cross-

section (irises are allowed). The exterior problem sees zero field inside the cavity and oppositely-

directed equivalent currents. Notice that when the interior and exterior problems are superposed,

the equivalent currents cancel and the original problem is recovered. The integral equation

applies to the exterior problem: It gives the fields in the waveguides in terms of the equivalent

currents. The following approach is similar to that used by Harrington & Mautz in a moment

method solution for open-ended waveguide radiation [27).

Let the field in waveguide A (z < 0) be comprised of a unit-amplitude incident field in the

dominant mode traveling in the +z direction, plus a series of reflected modes traveling in the -z

direction. The transverse (to z) electric field may be expressed in terms of a complete set of

orthonormal mode functions gi [281:
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Figure 11. Equivalence Model for Waveguide/Cavity Problem: (a) Original
Problem; (b) Interior Equivalent; (c) Exterior Equivalent

0o

El = e- go + E Cie•iZ (22)

i=0

The subscript t denotes transverse and the y's are the propagation constants. The dominant mode

function is go. The sum over modes i includes both TE and TM, as well as both sin(O) and

cos(4) degeneracies for circular and circular coaxial waveguides. The complex coefficients Ci

are unknowns that may be expressed in terms of the solution for the transverse fields in the

apertures, e.g.

C, = Ji E " •,ds - 60 i (23)
z=O['A

where boi is the Kronecker delta. The propagation constant for mode i is related to its cutoff

wavenumber, kci, by
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S2 (24)"Yi= kc -k

which is positive imaginary for propagating modes and positive real for evanescent modes. The

transverse magnetic field is

00

H-I = Yo)e-'Oz (t. x 0)- Ci Yi e"vi- (x xi) (25)

i=O

where 'Yj is a modal admittance:

__ -'-- (TE)

Yi = JL0 r (TM) (26)

tf-t (TEM)

The boundary condition at z=O is JAA = HixHA giving, from (25):

A - × i - + -A (27)
z=0 i=0

Subst'tuting (23) gives the final form of the integral equation for waveguide A:

SYji J Et' - -d _A 2Yo0 ° (28)
i=o rA z=O

Notice that the equivalent magnetic current is involved indirectly by EtA(z=O) =MA X1.

Similarly, the integral equation for waveguide B is

•, J-g I E k 'ds - Ja = 0 (29)
i =0 Gn z =d

The primes signify the fact that waveguide B may be a different type or size than waveguide A,
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so it may have different mode functions and modal admittances. The right hand side is zero

because there are no sources in wavegude B.

A general requirement that ensures uniqueness in aperture problems is that continuity of

both transverse E and transverse H must be enforced across each aperture. This usually implies

a requirement to solve for both transverse field components independently (or, alternatively, for

both M and J). However, the nature of the waveguide mode expansion links the transverse field

components through modal admittances, that is, Et and Ht are not independent. Therefore, it is

only necessary to solve for one of the two, and the obvious choice is E, for consistency with the

interior solution.

4.2. Discretization

The integral equations (28) and (29) give expressions for J that are substituted into the

boundary integral of (3). Hence, they are tested using the same trial functions, s as the interior

volume integral term. For compactness of notation, let ,j and *sBi denote the following inner

products:

Si- J . (30)
rA

*i'~ =Jýs5 .ids (31)

Appendix B discusses the methods by which these integrals are computed for rectangular, circular

and circular coaxial mode functions. The testing procedure gives the equations

Esnc = 2jko0io Yo*, 0 , sEPA (32)
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S EJ= ioi~o Yj " C r,(33)

St Si ti I I I I i

S~s = Jk 0•7oEYi sI '!4 •, s,' e'A (3

i=O

EJ = B (34)St Yi 'li *tist F

i=0

In practice, the mode sums may be truncated at 32 or less, depending on: (a) the waveguide

type; (b) the nature of the obstruction at and near the aperture; and (c) the ratio of the wave-

number to the cutoff wavenumber (more modes required near cutoff) 117]. Note that there is an

entry SE for every pair of edges s and t that share the same aperture, regardless of whether or

not they share any mesh cells. Hence, this matrix is not sparse. Ei"c has terms for all edges s

that are in aperture A.

4.3. S Parameters

The performance of passive RF devices is typically expressed in terms of their

"scattering," or "S" parameters. They may be found from those coefficients of the solution

vector E that correspond to mesh edges in the two apertures. The modal excitation coefficients

may be evaluated from these as

sE ~ACi= S si - 6i (35)
EFrA

I BC, = e. (36)
s E rR

The coefficient CO is the reflection coefficient, or S11. The transmission coefficient into each

mode of waveguide B is

T C Y 0  (37)
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When there is only one propagating mode in waveguide B, rcO = S21 . If there is also only one

propagating mode in waveguide A, then the following conservation of power relationship must

hold: ISIItV+Is 2112 --=.

The derivations of this chapter, combined with those of Chapter III, provide a framework

for a computer solution for two-port RF device S parameters. The computer code implementation

and validation results are presented later in Chapter VII. The next chapter discusses how this

methodology is extended to solve for the properties of phased arrays of cavity radiators.
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V. Periodic Radiation Condition

The cavity array problem (Figure 7) was formulated as a straightforward extension of the

RF device problem (Figure 8). It required replacing the integral equation for the second wave-

guide with one appropriate to a radiating aperture in an infinite array. This chapter gives the

form of the integral equation for an infinite periodic array and shows how it is reduced to matrix

form.

5.1. Periodic Integral Equation

The equivalence model for the cavity array problem is essentially the same as Figure 11.

However, the aperture on the right side, formerly waveguide B, is now one aperture in an infinite

uniform lattice. Therefore, the equivalent currents extend indefinitely over the outlet aperture

plane in both x and y directions.

Each radiator in the array is assumed to be excited by a unit-amplitude incident field in

the waveguide from z < 0, but the excitation phase may be different for each element in order to

produce a beam directed towards angles 0o, 0o in spherical coordinates. The phase shift as a

function of x and y is

O(xy) = e-jox e-jvYY (38)

OX = k sinOo cos4o (39)

VY = k sin0o sin4o (40)

Figure 12 illustrates the notation convention for an array lattice with an arbitrary skew angle ,y.

The aperture shape is arbitrary. The fields and equivalent currents in each aperture must have

the same magnitude as a function of x and y. A mathematical statement of the phase relationship

in (38) is Floquet's theorem 1291:
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Figure 12. Infinite Array of Apertures, Skewed Lattice

J(x+md.+ndycoty,y+ndy) = J(x,y)e-JV,(,"a,÷dYcoty)e-j O•"ay (41)

The left side is the equivalent current in any unit cell, and the right side is the current in the unit

cell centered at the origin.

Equivalent currents 1 and M in the apertures will generate vector potentials A and F in

the half space z > d. The magnetic field due to these is

H(r) =VXA-jwF+ VV-F (42)

The integral equation results from evaluating Ht, the transverse magnetic field in the plane z=d

and using the boundary condition J=-2xHt. Since A(z=d) is entirely z-directed it does not

contribute to Ht(z=d) and the integral equation is
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JW2X P+-'vv.Fj -J= 0 (43)

F is an integral over the source current M, and the limits of integration are infinite in x and y.

Appendix C describes how it may be transformed into the following infinite summation:

0 -J(x,y) + E E T,,mn Euc(kxmnkymn)e -kxmnxe -jkymnY (44)
m=-orn=-o*

K, 2 2 1-1/2 rk -1
k2 - kxmn - kymn kytnn) I (45)

= -•-x•-• kxmnkyinn (k2-k~xtn)]

,E, is the 2D Fourier transform of the transverse unit cell aperture field and k,,. and kmn are

sample points in the spatial frequency domain:

kxmn = 27m - ko sino 0cos4 0  (46)dx

kymn -n 27rmcot - kosinO0osino•° (47)d y d .

sometimes referred to as Floquet harmonics. The summation in (44) may be computed numeri-

cally because its terms decay with increasing I ml and In I, as discussed further in Section 5.3.

5.2. Discretization

The integral equation (44) is reduced to matrix form using the procedure outlined in the

previous chapter: First, solve for I and substitute it into the boundary term of (3); second,

substitute the series expansion for E; and third, substitute each ý., in turn for W. Note that the

integral equation involves the Fourier transform of the transverse aperture electric field, so its

expansion will be in terms of the Fourier transforms of the Ot's:
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N

F, e, ,(k,,ky) (48)

t,(k,,ky) _J e'J -eJ-xYekAYdxdy (49)

where rR denotes the radiating aperture. Testing gives the matrix terms:

SS= Tmn -tmn J • e-kxmnXe-kymny ds , s,t E rR (50)
m n F

where ttn denotes -t(km,kym). The limits of integration may be extended to + oo since •

is zero outside rk. Then, since 0. is a real function, the first integral may be recognized as the

complex conjugate of the Fourier transform of V,,. (The Fourier transform of a real function is

Hermitian, i.e. F(-k)=E*(k) [30:193]). Hence, a final expression for the elements of the matrix

SEJ is

EJ 
-s* kn9kSsJ -t(kxmnkymn) Tmn° s k n ) , s,t c- R (51)

m n

5.3. Floquet Mode Limits

The infinite sums in (51) must be truncated at some upper and lower limits _+m and 4+n.

Those limits are easily determined from the form of 4, derived in section C.4. Figure 13 is a

contour plot of J4 in dB for a typical finite element. The axes are kxhX and kyhy, where hX and

hy are the triangle (mesh cell) heights parallel to the x and y axes. This scaling ensures that the

size of the contours in Figure 13 are independent of mesh cell size. The Floquet harmonics are

superimposed as dots in the figure. From (46) and (47), their locations (for a rectangular lattice

and broadside scan) are kxhx=2rmhx/d. and kyhy=27rmh,,/d , . When the array scans away

34



15.00
XOl~

/ 5 .0 0 W O O\.

0 00

1 0 .0 0 -/ /• •• .

.. . .Ix1

-15.00 -10.00 -5.00 0.00 5.00 10.00 15.00

k~hX

Figure 13. Typical Scalar Finite Element Fourier Transform (Contours in dB,
sample points are Floquet modes for a square lattice with h ,, =hy = d,/5 = dy5)

from broadside, the points will move, but their spacing will not change.

A reasonable upper limit on the number of sample points kxinn and kynthat must be

included in the computation of (51) are those inside the -20 dB contour. (The product of and

ýt will be less than -40 dB for any points outside that contour.) The size of the contour is consis-

tently k~hX kyhy ±27r, but the sample spacing is inversely proportional to the unit cell

lengths d. and dy. Hence, using I k~h, , I kyhy I •! 21r in the leading terms of (46) and (47)

gives Im 1 •9 dx/hx and I n 1 d!9f"Y . In a typical problem, d, and dy are each approximately
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.5X and the mesh cells are approximately .AX in height. In such cases limits of -5 < m,n <

5 are adequate to ensure convergence. More modes must be included when the unit cell size is

larger, or when the mesh cell size is smaller.

5.4. Active Reflection Coefficient and Element Radiation Pattern

Some of the most important output results from the phased array analysis are the active

reflection coefficient, Ra, and the active element radiation (far field) pattern. Both are functions

of scan angle. They are analogous to the reflection and transmission coefficients in the two port

RF device problem.

The expression for Ra is identical to CO in (35). Both are due to the field reflected into

the inlet waveguide, computed from the waveguide aperture field. But now those aperture fields

include the effects of a periodic radiation condition at the outlet side, and so it is the reflection

coefficient for one feed waveguide in an infinite array, i.e. the "active array reflection coeffi-

cient."

The active element pattern is analogous to a transmission coefficient. It is a measure of

the excitation strength of a plane wave (a Floquet mode) propagating away from the array.

Amitay et. al. show that the 0 and t0 polarization components of the element's far field pattern

are due entirely to the lowest order TE and TM Floquet modes, respectively 129:571. Rewriting

their expressions in terms of Fourier transforms gives:

EO secO (.fcoso + Ysino) .E*,(kxoo kvoo) (52)

= I coso -. tsin4) - "E(kxoo,ky00 ) (53)

A check for conservation of power may be made by computing the transmission coeffi-
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cients for the two mn=O0 Floquet modes, whose admittances are Y 10 and Y2 oo for TM and TE

(see section C.5):

Te = E0 ýY 20 0/Yo = E, ý/secO/Yoo (54)

T6 = E Yj ,00oo o =/ Y = cosVY0ro-o (55)

Yo is the feed waveguide's dominant mode admittance. When the feed waveguide supports only

one mode and there are no grating lobes in visible space, the conservation of power relationship

is IRal + ITOI + IT411 = I

The derivations given in this chapter, when combined with the preceding chapters' finite

element and waveguide derivations, constitute the framework for a computer solution for the

scanning properties of cavity arrays. The implementation and validation results are discussed

later in Chapter VII.
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VI. Periodic Boundary Conditions

The final stage in the problem formulation bridges the gap between the cavity array

problem in Figure 7 to the general array problem in Figure 4. The side walls of the cavity

"-gion (I are no longer conductors, so adjacent radiators are free to interact across those walls.

The periodic radiation condition does not account for that interaction. This chapter will show that

the general array problem may be accomplished by constructing a matrix for a single unit cell

as though it were a cavity with open-circuit side walls; then applying a mapping directly to the

matrix to enforce the periodicity condition. The necessary characteristics for a unit cell will be

discussed first, then the algorithm for the matrix mapping will be presented. Next, the side walls

will be shown to have no net contribution to the boundary functional. The specialization of the

algorithm to edges shared by the radiation boundary condition and a unit cell side wall is dis-

cussed last.

6.1. Unit Cell Representation

A typical radiator is fed by a waveguide through an aperture in a ground plane. Unlike

the cavity radiators considered in the last chapter, it has some structure projecting above the

ground plane. That structure may be enclosed by an imaginary box whose lower surface is the

ground plane at z=O. Its top surface at z=h is in free space above the radiator structure (see

Figure 4). The side walls of 0 are the unit cell boundaries. As was indicated in Figure 5, the

unit cell may be trapezoidal as well as rectangular. In fact, its shape is fairly arbitrary within

a few constraints, with some possibilities illustrated in Figure 14. The constraints are: (a) the

unit cell side walls do not cross the feed waveguide; and (b) opposing boundaries must be identi-

cal except for a translation of (d.,O) or (dycotydy). The first array (Figure 14a) has circular

waveguides whose diameter is larger than dy, so the unit cell shape along the boundaries has been
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Figure 14. Unit Cell Definitions: (a) Circular Waveguide Array; (b) Rectangular Patch Array

altered. The second is a rectangular patch array, showing that the unit cell walls may cut through

the radiator's conducting structure.

The unit cell definition must be such that the Floquet condition is observed. Let fin

denote a field in the m'th column and n'th row of the lattice. Then the unit cell fields are related

by:

fm,n f 0 ,0 e-j Y

1x xd. (56)

Oy : i. dy cot-y + Oy dy

where ý, and Oy are given by (39) and (40). An example unit cell mesh is shown in Figure 15.

The two perspective viewQ show opposite sides of the mesh to illustrate the important requirement

that the surface mesh on opposing faces must be identical. Every edge on the + x or + y bound-

ary has an image edge on the -x or -y boundary respectively. Consequently, the expansion and

testing functions associated with those edges are identical except for a translation.
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Figure 15. Example Unit Cell Mesh Showing Opposite Faces

6.2. Mapping from an Infinite System

The matrix generated by discretizing the functional represents interactions between

electric field sources associated with mesh edges. Consider the 2D triangle mesh shown in

Figure 16, which represents an infinite mesh of an infinite array. It was constructed in such a

way that opposing unit cell boundaries have identical mesh edges. Consequently, when the mesh

is replicated in each unit cell, the finite elements are perfectly aligned across unit cell boundaries.

If the finite element method were applied to the infinite problem, it would generate an

infinite size matrix. Appendix D shows formally, for a one-dimensional problem, how periodic

boundary conditions are exploited to reduce the problem to a finite matrix involving a single unit

cell. The extension to periodicity in two dimensions is straightforward. Essentially, the proce-

dure amounts to "folding" opposing unit cell boundaries onto each other. The +x and +y

boundary edges are removed from the problem and the -x and -y boundary edges will interact

with those just inside the opposing boundaries, but with an appropriate phase shift.
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Figure 16. Triangular Finite Element Mesh for Infinite Two-Dimensional Periodic Problem

The first step in the procedure is to construct the matrix for an isolated unit cell, Next,

the terms involving the +x boundary are removed, and corresponding -x boundary terms are

created. Then the latter step is repeated for the +y and -y boundaries. For example, in Figure

16, edges 15 and 19 share a mesh cell (a triangle), so there will be matrix terms S15,19 and

S19,15. Edge 2 is edge 19's image, so the new entries created are S15,2=S5,1 19 exp{-jai} and

S2,15=S1 9, 15exp{joc} . Also, S19,19 will be added to S1-,,. This is necessary because of the

truncation of the mesh at the unit cell boundary. In the infinite mesh, edge 2 would interact with

itself through cells to the left and right. In the unit cell mesh, there is no cell to the left, so S2,2

is incomplete, but S19,19 is identical to the missing contribution. In the 3D problem with two-

dimensional periodicity, there will also be matrix entries tfr edge pairs that are both on the +x

or +y boundaries, representing their interaction within a cell to the left of the boundary. These

terms must also be added to their -x counterparts without a phase shift.
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The algorithm is summarized in Figure 17. A consequence of removing mesh edges is

that some of the matrix rows and columns become entirely zero, and they must be dJeted before

the matrix solution can begin. This is consistent with the fact that unknowns associated with

image edges are not independent. Due to periodicity, once one is known, the other follows from

the periodicity condition. Unless one set of dependent unknowns is removed, the system would

be over-determined.

6.3. Boundary Functional

The algorithm discussed above only dealt with the volume integral terms from the

I. FOR EVERY EDGE s ON +x BOUNDARY:

A. LOCATE IMAGE EDGE s' ON -x BOUNDARY

B. FOR EVERY EDGE t SUCH THAT St.•0:

1. IF t IS ON THE + x BOUNDARY, THEN:

a. LOCATE IMAGE EDGE t'

b. SET S5,'t= Ss't, + Sst

c. SET S.t = 0

2. ELSE IF t IS NOT ON THE +x BOUNDARY, THEN:

a. SET St = Sst exp{jat}

b. SET S ,= St, exp{-ju.}

c. SET St =Sts = 0

II. REPEAT I FOR +y AND -y BOUNDARIES

III. COMPRESS THE MATRIX (ELIMINATE ZERO ROWS & COLUMNS)

IV. COMPRESS THE INCIDENT CURRENT VECTOR

Figure 17. Periodic Boundary Condition Algorithm
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functional. The boundary integral must now account for the contributions from the unit cell side

walls in addition to the waveguide aperture and radiation boundary. The boundary integral may

be regarded as an expression for power flow across r. In an infinite array, the power entering

one side of the unit cell must be the same as that leaving the opposite side, so it is expected that

the side walls should have no net contribution. The following will show this to be true.

Consider the boundary integral of (3) at opposing unit cell walls parallel to the x-z plane.

The magnetic field must obey the periodicity condition, and since the outward surface normals

are opposite, the equivalent currents are

J(x+203,2) -J(x,- Y) e JQ
2 (57)

= 1 dycot'Y

Any admissible trial function W (see Appendix A) must obey the conjugate relationship because

it represents waves traveling in the opposite direction, i.e.

W*(x+20,TY) = W-*(x,'-) eJ'Y (58)
2

The boundary functional evaluated at the two unit cell walls is

dX

2F- fIdz I W-*(x, - 2) .J-(x, - ý-Zdx (9
- j j2 *2

h2 d , +v 
d

FY+= fjdz f W *(X, 2).hX, 2 (60)
0 d,

2
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Using a change of variables, let T=x-2fl:

dx

h -2
rY = ' W*(T+20,Lý) -J(,0ýd d61

0 2~-
2

Using (59) and (60):

dXT-

hF = - r d
-Idz IW-*(Tc?4).(T, -2dr (62)3 J2 '2

2

and therefore, Fy+ = -Fy... A similar procedure will show that Fx+ = -Fx , hence the unit

cell side walls have zero net contribution. A similar result has been reported for a two-dimen-

sional problem with periodicity in one dimension [161.

6.4. Radiation Boundary

A form of periodicity condition was already imposed on the radiation boundary through

the periodic integral equation. However, it did not account for the mesh truncation at the unit

cell boundary.

In order to complete the specification of periodicity conditions for edges on rR, either

of two approaches may be used: The first method is to apply the same algorithm (Figure 17)

used for the finite element boundary terms, but excluding I.B.2. The second, demonstrated by

Gedney for periodicity in one dimension 1161 used "overlap basis functions" at one boundary

edge. Those expansion and testing functions associated with points on one boundary extend into

the next unit cell. In the context of Figure 16, that amounts to: (a) removing the expansion

functions for edges on the +x and +y boundaries (16-20); and (b) extending the functions for

edges I & 2 and 3-5 into the next unit cells to the left and below, respectively. Then the periodic
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integral equation is applied to the modified mesh. Both techniques were tested as part of the code

development and validation, giving equivalent results.

6.5. Summary

This chapter and the preceding three make up the formulation for the general phased

array problem. They are the framework for mapping the boundary value problem into a discrete

form that may be solved by computer. The matrix for the general array problem is constructed

of the three parts that were developed in Chapters III, IV and V: first, a sparse matrix due to

finite element interactions within the unit cell; second, a dense upper-left submatrix due to

waveguide interactions; and third, a dense, lower-right submatrix due to Floquet-mode interac-

tions. The side-wall periodicity conditions are implemented as a transformation of that matrix,

ah was described in this chapter. The next three chapters discuss the validation tests for three

computer codes that implement the solutions to the RF device problem; the cavity array problem;

and the general array problem.

45



VII. Validation - RF Device Problem

The goals for this simplified problem (Figure 8) were to demonstrate essential charac-

teristics of the finite element and waveguide mode implementations. The 3D vector finite ele-

ments were shown to correctly predict the field behavior at conductor edges and dielectric inter-

faces. The higher-order waveguide mode calculations were validated through comparisons with

measured and published results for several waveguide discontinuity problems. These results also

provided estimates for sampling requirements: the number of finite elements; and the number

of waveguide modes. More complete details are given in a previous report [171.

7 1. Computer Code Implementation

7.1.1. General Procedure. A FORTRAN computer code named TWOPORT implements

the solution to this generic problem. An outline of the actions it takes is given in Figure 18. The

user instructions, read during the first step, include: the type, size, location, number of modes

and Er for each waveguide; the frequency limits and frequency stepsize; and the name of the file

containing the problem geometry. The geometry file contains three sections: The first lists the

node coordinates and several flags for each, identifying boundary nodes (port # for those in

waveguide apertures and conductor # for those on conducting surfaces). The second block lists

the indices of the four nodes comprising each tetrahedron and the index of the material filling it.

The last block lists the complex Er and tr of each material.

The third step converts the node-based geometry to an edge-based geometry. Each edge

in the mesh defines an electric field vector expansion function that exists over all cells adjacent

to that edge. If two nodes are on the same conductor, then there cannot be a field along the line

joining them, so those edges are not included in the edge list. This is the means of enforcing the

boundary condition on tangential electric field at conducting surfaces. On the other hand, if two
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I. READ INSTRUCTIONS AND OPTIONS

II. READ PROBLEM GEOMETRY

III. CREATE EDGE-BASED GEOMETRY

IV. FOR EACH FREQUENCY:

A. COMPUTE TERMS OF SEE ACCORDING TO (20), (22)

B. FOR WAVEGUIDE A:

1. COMPUTE INCIDENT CURRENT VECTOR IN (32)

2. COMPUTE TERMS OF SF FROM (34), (35)

C. FOR WAVEGUIDE B, COMPUTE TERMS OF SEJ FROM (34), (35)

D. SOLVE (SEE + SU ) E = Elia FOR E

E. COMPUTE MODE EXCITATION COEFFICIENTS FROM (36), (37)

Figure 18. Solution Procedure in Program TWOPORT

nodes are on different conductors, there may be a field between them, and such edges must still

be included. The matrix fill operations must account for the direction of the vector function, so,

by convention, it is always directed from lowest to highest node index.

Most of the actions under step IV in Figure 18 are straightforward implementations of

formulas derived in Chapters III and IV and Appendix B. The matrix elements are computed in

three steps: first, the interior finite element interactions; and second and third, the exterior

waveguide interactions for waveguides A and B, respectively. After solving the system for the

unknown electric field coefficients, excitation coefficients for any number of higher order modes

may be computed.

7.1.2. Matrix Solution. The matrix structure is mostly sparse, except for two dense

submatrices in the upper left and lower right corners. This structure results from ordering the
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edges by increasing centroid z coordinate, starting with those in the waveguide A aperture and

ending with those in the waveguide B aperture. Unfortunately, there is not usually any special

structure (sparsity pattern) to the matrix. It tends to be banded, but the bandwidth is large and

there is no advantage to using band storage or specialized band solvers. Hence the two approach-

es used for the matrix solution were: (a) ordinary LU decomposition (LUD) using standard

library routines and ordinary row-column storage (IMSL 131:341 and LAPACK[32:150]) for

problems with 2000 unknowns or less; and (b) the conjugate gradient method (CGM) based on

formulas from Sarkar and Arvas 1331, using sparse storage, for larger problems.

The CGM solver was written specifically to accommodate the form of sparse storage most

attractive for this particular class of problems. The two dense submatrices due to the waveguides

are stored in ordinary row, column format; while the sparse finite element matrix is stored in a

column array. Its entries are in arbitrary order, stored in the order that each edge pair is first

encountered as the fill algorithm performs operations one cell at a time. That assembly technique

is considerably more efficient than performing the same operations one edge at a time [261.

Figure 19 is a comparison of execution times versus number of edges for LUD and

CGM. The CGM solver clearly has the advantage for problems with 1000 unknowns or more.

Unfortunately, its solution time is more difficult to predict a priori, since the number of iterations

it will need to converge is unknown. The convergence measure is the residual error norm, which

is the L2 norm of the solution error:

e= Ii S i- E 14c (63)

(i is the iteration number). The initial guess Eo is the zero vector. Figure 20 is an example

convergence history (for a microstrip transmission line fed by coaxial waveguide at each end).

The S parameters have converged to within 1 % of their correct values when El/E0 is less than

.001. Problems with rectangular and circular waveguide ports typically only require I N-2N itera-
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Figure 19. Comparison of Solution Times for LU Decomposition (IMSL) and Conjugate
Gradient Method (CPU seconds on VAX® 8650 minicomputer)

tions to converge, where N is the number of unknowns.

7.2. Waveguide Discontinuities

7.2.1. Iris in Coaxial Waveguide. Two test cases are representative of the several

waveguide discontinuity problems discussed in [171: a conducting iris in coaxial waveguide; and

a step discontinuity in circular waveguide. For the first of these, Figure 21 is the tetrahedron

mesh used as the input to program TWOPORT. Relating this model to Figure 8, the inlet and

outlet waveguides are both coaxial (inner radius a= 1.5mm, outer radius b=3.5mm) and the

cavity region 0 represented by the mesh is simply a short section of the same waveguide.

Shading has been added to identify the nodes tagged as perfect conductors. One quadrant of the

inlet end is blocked by a thin conducting iris.

Measurements of this "device" were made by inserting a foil iris between two APC-7mm

adapters and using a network analyzer to obtain S1 over a 2-18 GHz frequency range. Figure
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Figure 20. Convergence of Residual Norm and Reflection Coefficient
using Conjugate Gradient Matrix Solver

Figure 21. Finite Element Mesh for Coaxial Waveguide Section with Conducting Iris
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22 is a comparison of those measurements with TWOPORT calculations, for both the magnitude

and phase. These results validate two important features of the solution approach: First, the

higher-order coaxial mode functions and their inner products with finite elements are correctly

implemented. Second, the finite element solution is correctly predicting the field behavior at the

edge of a perfect conductor.

Z2.2. Circular Waveguide Mode Converter. A step discontinuity in a circular wave-

guide is a simple type of mode converter commonly used in feeds for reflector antennas 1341.

The antenna's radiation pattern shape is controlled by carefully adjusting the amplitude ratio of

modes in an oversize (multimode) waveguide or horn. Figure 23 shows finite element meshes

for two test cases with different inlet waveguide radius and the same outlet waveguide radius.

Multimode calculations for these geometries were presented by Masterman & Clarricoats [35].

Their results are in terms of a mode conversion ratio, M:

W 1.2 180"
o'10

APC-7mm CoaxS/F•_ \ 165 U'

•-0.8- 0 "• •150 I-Z 1Z08 FOIL IRIS Z

,FL 0.6- 0 -135 L"

u- L
W W
0 __ __ _ 0
0 0.4 - Meas Magnitude + ÷120 0
Z Z
0 Meas Phase 0

0 0.2 - HFEM Magnitude
I-. HFEM Phase u.

cc 0 1, 90 "

2 4 6 8 10 12 14 16 18

FREQUENCY (GHz)

Figure 22. Measured and Computed S1I Magnitude and Phase for Coaxial Iris
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M Cgp2(P =a) (64)

SCigp I(p =a) I

C' and Cj are the excitation coefficients for the TE, 1 and TM modes, respectively, and g', and

g92 are the radial components of the mode functions. Hence, M is the relative strength of the

two modes measured at the wall of the outlet waveguide.

Figure 24 compares TWOPORT calculations with the multimode results. The disconti-

nuity at 6.25 GHz for a, = 1.15" is due to the fact that the inlet waveguide also supports the TMI

mode above that frequency. The agreement of the TWOPORT calculations with the well-estab-

lished multimode calculations indicates that the higher-order circular waveguide mode functions

and their finite element inner products have been implemented correctly. It also demonstrates

a flexibility of the approach of using higher-order modes in modeling feed structures that support

more than one propagating mode.

7.3. Printed Circuit Devices

One of the most important capabilities of the finite element method is its ability to deal

with inhomogeneous dielectrics. Printed circuit devices are an example application that is espe-

cially interesting to this research because their modeling requirements are similar to the printed

antennas discussed in the introduction. The specific test cases were: (a) a straight length of

microstripline with coaxial connectors; and (b) a microstrip meander line.

7.3.1. Microstrip Transmission Line. The finite element mesh shown in Figure 25 is a

thin dielectric slab (100 pm), situated in the bottom of a perfectly conducting box. The mesh for

the air space above the slab is not shown. Shading has been added to identify the nodes associat-

ed with microstrip line, the coax center conductor, and the coax dielectric. There is an identical

coaxial port at the far end of the device. The coax dimensions (a=43 pm, b= 100 pm) were
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Figure 25. Microstrip Transmission Line Section in Conducting Enclosure

chosen strictly for convenience since the objective of this test was to verify a microstrip

transmission line property (guide wavelength).

The substrate dielectric constant was chosen as 12.9 to represent Gallium Arsenide

(GaAs). The 75/Lm-wide microstrip line has the same characteristic 50 1 impedance as the coax.

The enclosure dimensions were chosen to ensure that there are at least 4 line-widths space

between the microstrip and the cavity side and top walls. That is adequate to ensure that the

enclosure does not influence the guide wavelength or characteristic impedance 1361.

The transmission coefficient for a line length of 500 Am was computed first. Next, the

calculation was repeated with finite element geometry scaled by 1.5, giving a line length of 750

Am. The difference in S21 phase was 350 at the 40 GHz test frequency, from which the guide

wavelength is calculated as 2.57 mm. Quasi-static formulas developed by Wheeler 137] give 2.54

mm. This close agreement indicates that the finite element method is correctly predicting the

fields at the interface between highly contrasting dielectrics, even in the presence of a sharp

conducting edge.
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7.3.2. Microstrip Meander Line. Since the modeling method accurately accounts for all

relevant boundary conditions for a simple microstrip line, it should be obvious that it can correct-

ly predict the performance of most passive printed-circuit RF components. A microstrip meander

line was chosen as a demonstration case since measured data was available. The circuit dimen-

sions (in Arm) and the finite element mesh (substrate cells only) are shown in Figure 26.

The measurement reference planes are at the centers of the pads at each end of the circuit,

while those used in the calculations are at the points where the lines begin to taper from 75/Lm

down to 251im, so the difference must be accounted for when comparing the data. The circuit

layout shows the location of via holes that provide a ground for the measurement probes. At the

contact points, the 7 5gum center conductor and 50jm-wide slots form a 500l coplanar waveguide

(CPW). Using formulas given by Rowe and Lao [381, the effective relative permittivity for that

transmission line structure was found as feff=6. 29 . The measured S, , phase was corrected by

adding 3600°. (75pm)(Eefr.f)4/Xo. The calculated S21 phase was also corrected by subtracting the

excess phase introduced by the coaxial connectors, computed from a straight length of microstrip

line as discussed in the preceding section. Figure 27 compares the measurements and calculations

over the frequency range from 1 to 26 GHz. The slight discrepancy in the phase slope is

attributable to the differing reactances of CPW-microstrip (measurement) and coax-microstrip

(calculations) transitions.

7. 4. Importance of Higher Order Modes

An important issue is whether there is in fact any benefit to ising higher-order modes in

conjunction with a finite element solution. The alternative is to extend the finite element mesh

into the connecting waveguides fE.r enough that any higher modes excited by the cavity's contents

and/or apertures have decayed to insignificance 1391. The answer depends on two factors: first.

the mode excitation strengths; and second, their attenuation cons•ants in the waveguides, which
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depends mainly on the ratio of the frequency to the mode cutoff frequency.

Figure 28 shows how the magnitude of S11 converges with the number of modes in the

one-quadrant coaxial iris problem (Figures 21 and 22). The most important modes are the TEM

and the TE1 1 modes. The latter is excited at about -10 dB, and its cutoff frequency in APC-7

coax is about 20 GHz. At 18 GHz it decays by 29 dB per wavelength, so in order for it to decay

below -30 dB (regarded as negligible for purposes of S parameter calculation), the mesh would

need to extend roughly /%X into the waveguide in each direction. The finite element mesh and

the interaction matrix would then contain an additional 500-1500 edges and unknowns,

respectively.

On the other hand, the two microstrip problems do not excite any higher order modes

above the -30 dB level, so those devices could be accurately modeled using only the lowest-order

mode and still terminating the mesh at the waveguide aperture. Thus, the use of the mode sum

as a continuity condition can make the finite element solution more efficient, but the improvement

WU 1APC-7m, Coax
1

D

S0.8 0 .^
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Figure 28. Reflection Coefficient for One-Quadrant Coaxial Waveguide Iris
Calculated with Varying Numbers of Higher-Order Modes
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over the dominant-mode-only approach is problem-dependent.

7.5. Summary

In addition to validating the essential properties of the electromagnetic solution approach,

the TWOPORT code provided valuable data on practicality: typical mesh sizes and execution

times. The data, summarized in Table I, includes all of the test cases discussed in this chapter,

plus three others: The rectangular and circular waveguide cases were short sections of waveguide

used to verify dominant mode propagation; and the coax-to-rectangular waveguide transition

consists of a right-angle metal launcher in a section of rectangular waveguide approximately X/3

long. The meshes for these three problems are shown in Chapter VIII, where they are used as

cavity array elements.

Table I. Mesh Sizes, Iterations and Matrix Solve Time for TWOPORT Test Cases
(Solve time is CPU time on VAX® 8650 minicomputer)

Solve
Test Case Volume/X3  Number Cells/X 3  Number of Time

Mesh Cells Iterations (min.)

Rectangular Waveguide .149 348 2067 .9N 0.7

Circular Waveguide .120 342 2850 1.3N 1.4

Iris in Coaxial Waveguide .0135 847 63x103 .9N 12.5

Circular Waveguide .376 1504 4000 0.5N 43.5
Mode Converter

Coax-to-Rectangular .294 2442 8294 4.7N 226.
Waveguide Transition

Microstrip Meander Line 9.4x10-5  4190 4.5x107 8.4N 524.

Microstrip Transmission Line 5.7x10-4  4662 8.2x 106 7. IN 683.

The first column in Table I gives the total volume in cubic wavelengths for each problem.

For the simpler problems, the number of cells is determined primarily by the sampling
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requirement of 10 nodes per wavelength. More complicated structures, however, require more

cells in order to capture fine details of geometry. Column 4 gives the number of iterations in

terms of N, the number of mesh edges, that were required to obtain Lonvergence of the residual

norm to .001 of its initial value (using the zero vector as an inital guess). In all cases, the

maximum number of iterations was less than 10 times the number of edges (unknowns). The

matrix solve time per frequency sample is given in the last column. These results indicate that

practical design problems can be accomplished on typical minicomputers and workstations.

This chapter has validated two key elements of the solution approach. First, it showed

that FEM can correctly account for boundary conditions typical of antenna problems: conductors,

conductor edges and dielectric interfaces. Second, it showed the validity and usefulness of the

waveguide mode integral equation as a continuity condition. These results validated not only the

generic concepts, but the computer code implementation as well. The latter was especially

important since the TWOPORT code included most of the structure and modules needed for the

subsequent cavity array problem solution discussed in the next chapter.
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VIII. Validation - Cavity Array Problem

The second development stage replaced the integral equation for the outlet waveguide

with the periodic integral equation. This allows validation of the periodic radiation condition

without the complexity of side-wall periodicity conditions. It also provides a tool useful for

analyzing the properties of radiators such as open-ended waveguides, cavity-backed slots and

multimode horns. This chapter describes its implementation in a computer code and presents

comparisons of its calculations with published results. Also presented are two specific examples

of radiators that are beyond the capability of previous methods: a pyramidal horn; and a rectan-

gular waveguide with a coaxial transition in close proximity to the aperture.

8.1. Computer Code Implementation

A FORTRAN program named CAVIARR (cavity array) implements the solution to this

generic problem, depicted in Figure 7. Figure 29 is an outline of its actions. Note that all of

these actions up to step IV.C. are essentially the same as in program TWOPORT. The interior

finite element matrix and the inlet waveguide submatrix calculations are exactly the same, since

they do not depend on the scan angle. For each separate scan angle, the submatrix due to the

radiating aperture must be recalculated, then the system must be solved again for the field vector

E. The active reflection coefficient calculation is the same as the calculation for S1 l in TWO-

PORT. However, instead of the S21 calculation, CAVIARR calculates the element far field and

transmission coefficients into 0 and 0 polarizations.

8.2. Waveguide Arrays

8.2.1. Rectangular Array. The scan-dependent reflection coefficients for several open-

ended waveguide arrays are available from publications by other authors. For example, the

properties of the rectangular waveguide array shown in Figure 30a were first presented by Dia-
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I. READ INSTRUCTIONS AND OPTIONS

II. READ PROBLEM GEOMETRY

III. CREATE EDGE-BASED GEOMETRY

IV. FOR EACH FREQUENCY:

A. COMPUTE TERMS OF SEE ACCORDING TO (20), (22)

B. FOR WAVEGUIDE A:

1. COMPUTE INCIDENT CURRENT VECTOR IN (32)

2. COMPUTE TERMS OF SE FROM (34), (35)

C. FOR EACH ANGLE:

I. COMPUTE TERMS OF SEJ FROM (51)

2. SOLVE (SEE + SEJ ) E = Einc FOR E

3. COMPUTE REFLECTION COEFFICIENT AND MODE
EXCITATION COEFFICIENTS FROM (36)

4. COMPUTE ELEMENT FAR FIELD AND TRANSMISSION
COEFFICIENTS FROM (52)-(55)

Figure 29. Solution Procedure in Program CAVIARR

mond [401 and independently confirmed by several others [291,[411.

Figure 30b is the finite element model used by program CAVIARR - simply a short

section of waveguide. The nodes on the shaded surfaces were tagged as conductors, while those

on the front and back faces were tagged as radiating aperture and waveguide boundaries, respec-

tively.

Figure 31 compares Diamond's results with CAVIARR computations. The interesting

feature of this test case is the scan blindness near 330 in the H-plane (the 0=0 plane). When the

array scans to that angle, nearly all of the incident power is reflected back into the waveguide.
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The CAVIARR (HFEM) calculations used waveguide modes up to m,n=2,3 and Floquet modes

up to I ml, In 1 =5,5. This number is consistent with the estimate given earlier in Section 5.3

since the mesh spacing in the aperture is approximately V110. In fact, I ml, In I <-4 was adequate

to ensure convergence of the active reflection coefficient to within 1% in magnitude and 1V in

phase.

8.2.2. Rectangular Array with Conducting Iris. A straightforward method for eliminat-

ing the H-plane scan blindness in the rectangular waveguide array is to place conducting irises

in the apertures. For example, Lee & Jones 411] performed a multimodet analysis for the same

array lattice and waveguide size as in Figure 30, except that a thin conductor blocked the left and

right 1h of each aperture. The same finite element mesh as before (Figure 30b) was used for this

problem, except that the nodes associated with the iris were tagged as separate conductors.

Figure 32 compares the CAVIARR calculations with the H-plane element gain pattern from [411.

The scan blindness was indeed suppressed by the addition of the irises, but at the expense of a

reduction in the broadside gain.

The cdose agreement between the CAVIARR calculations and published results for these

two test cases demonstrates that the hybrid periodic integral equation/finite element formulation

is valid. It also demonstrates that its implementation in the computer code is accurate.

8.2.3. Circular Waveguide Arrays. The lattice geometry for an array of circular wave-

guide radiators is shown in Figure 33a. The incident waveguide field is in the dominant TEII

mode and polarized parallel to the y axis. Multimode calculations for this geometry are available

from Amitay et. al. [291.

1 The multimode method is sometimes referred to as a moment method. It equates the transverse fields

on the two sides of the aperture as sums over modes appropriate to each region. The modes of one waveguide
are used as testing functions in order to generate a matrix equation. The generic technique developed for wave-
guide discontinuities was adapted to the phased array problem using Floquet modes.
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Figure 33. Circular Waveguide Array Test Case: (a) Lattice; and (b) Tetrahedron Mesh

64

-~~~ . . .. . . . .. . . .ilii



D Multinode, E-Plane

* HFEM, E-Plane
Z 0.8-
L 0.Multimode, H-Plane

UHFEM, H-Plane

Z 0.6 UW

U-

0 14
00

-J
L-w

Cc 0
0 10 20 30 40 50 60

SCAN ANGLE 0 (deg.)

Figure 34. Circular Waveguide Array Active Reflection Coefficient vs. Scan Angle

The finite element mesh used for CAVIARR is shown in Figure 33b. Its radius was

adjusted so that the sum of the tetrahedron volumes was the same as a perfect circular cylinder

with .343Xo radius. Figure 34 shows the finite element calculations along with the published

multimode results for both E- and H-plane scanning [29:276,2801. Again, the CAVIARR code

is accurately predicting the active reflection coefficient at all scan angles.

A method for suppressing the scan blindness in circular waveguide arrays is to use dielec-

tric-loaded waveguides that can be packed closer together since their radius is smaller for a given

wavelength. In the following test case, the waveguide radius was adjusted so that Er'/h a =

.343Xo. The lattice spacing was adjusted so that dx/a and dy/a are constant. The finite element

model was simply a scaled version of the mesh in Figure 33b. Figure 35 is a comparison of the

loaded and unloaded cases, the latter with Er= 4 . 1, for H-plane scanning 129:2901.

A third and final test case involving circular waveguide arrays also includes a dielectric,
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Figure 35. Active Reflection Coefficient vs. Scan Angle - Circular Wavegiide
Array with and without Dielectric Loading

but instead of completely filling the waveguide, it is only a short plug in the aperture end, flush

with the ground plane. Amitay et. al. give results for E-plane scanning using the lattice in Figure

33a, and .429Xo length plugs with fr= 1.8 [29:293]. The finite element model for this problem

was a longer version of that depicted in Figure 33b - it was 6 mesh cells in length, in order to

meet the X/10 sampling requirement. Figure 36 compares those results for the no-dielectric case.

The results of the CAVIARR and multimode computations are substantially identical. (There are

sources of error in both approaches, such as the number of modes and the number of integration

points. The important fact is that both methods are accurate enough to allow a judgement of

whether or not an antenna design is acceptable.) This demonstrates the important capability of

the hybrid finite element method for modeling arrays that have dielectric loading. Unlike the

multimode method, it is not restricted to homogeneous dielectrics.
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8.3. Pyramidal Horn Array

The multimode method was the only rigorous technique available for addressing cavity

array problems. This confined the available solutions to structures for which mode sets can be

constructed, mostly cylindrical waveguides. There is, however, one example by Amitay & Gans

[421 that uses a variation of the multimode method to approximate the scanning characteristics

of an array of pyramidal horns. Their technique models the pyramidal horn, shown in Figure

37a, as a rectangular waveguide whose dimensions are the same as the horn mouth, containing

planes at various z locations that are transparent to those waveguide modes that may propagate,

and shorting those that are cut off. In spite of the approximate nature of their prediction tech-

nique, they obtained fairly good agreement with measured data.

This problem is a fairly stressing case for the hybrid finite element method. First of all,

the mesh, depicted in Figure 37b, has approximately 6000 edges. Furthermore, the large unit
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Figure 37. Pyramidal Horn Radiator: (a) Dimensions; (b) Tetrahedron Mesh

cell size (the same as the horn mouth) requires an unusually large number of Floquet modes (60

in kx and 15 in ky).

Figure 38 is a comparison of the CAVIARR calculations for active element gain with

measured data from [42]. The scan plane is 0=90°, for which the co-polarized field is the E0

component. The gain in decibels is 20 logjoEO. The interesting feature of this test case is the

scan blindness near 400, due to excitation of a higher-order waveguide mode at the aperture. In

contrast to the waveguide cases discussed earlier, the active reflection coerficient does not become

large near the blindness angle. Since there is more than one propagating Floquet mode in this

instance, incident power that is not transmitted in the desired direction is transmitted into another

mode, i.e. a grating lobe.
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8.4. Coaxial-to-Rectangular Waveguide Launcher

An end-wall transition, or "launcher," from coaxial to rectangular waveguide is shown

in Figure 39. This type of transition ha.z an advantage in a rectangular waveguide phased array

because the waveguides are packed too closely to use a broad-wall launcher. This design, due

to Tang and Wong [431, is an extension of the coax center conductor with a shorting post joining

it to the broad wall. The probe is centered in height and offset 1/10th the waveguide width. Its

length should be approximately one fourth the guide wavelength at the design frequency. For

a length of 9mm, the frequency response is shown in Figure 40 (computed by program TWO-

PORT).

The experimental array reported in 143] had a long waveguide section between the launch-

ers and the open apertures, and higher-order waveguide modes excited by either one would not

affect the other. The antenna's weight and size would both benefit if the launchers were placed

as close as possible to the apertures, but then their mutual interactions are not negligible.
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Horn Array (Measured Data tronm Amitav & (11nm 1421)

60)



4a

ay

(a)(b

Figure 39. End-Wall Transition from Coax to Rectangular Waveguide (After Tang &
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Considering again the rectangular waveguide test case discussed in Section 8.2.1, suppose the

waveguide elements are only 10mm deep, with a launcher extending to within 2.5mm of the

aperture. The predicted active reflection coefficient vs. angle is shown in Figure 41, compared

to the original case, where the array is fed by semi-infinite rectangular waveguides (both calcula-

tions by CAVIARR). Evidently, the launcher in close proximity to the waveguide opening

prevents the formation of the higher-order waveguide mode that is responsible for the scan

blindness condition, which was the purpose of the conducting irises discussed by Lee & Jones.

Furthermore, the interactions between the launcher and the waveguide aperture do not generate

any additional resonance effects, so there is no need to separate the two by a long length of

waveguide. Thus, the array element consisting of a coaxial launcher in a short waveguide section

is a better solution than was previously available because it achieves the same result with a

smaller and simpler structure. Although rectangular waveguide arrays are outdated, this is

nonetheless an illustration that: (a) the hybrid finite element method can be used to solve practical

>-4-z
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Figure 41. Active Reflection Coefficient for Rectangular Waveguide Array with
Coaxial Launcher and Rectangular Waveguide Feeds
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problems for which accurate methods were not available before; and (b) the cavity array solution

has important applications by itself even though it, like TWOPORT, was an intermediate step in

the code development. The following chapter describes the implementation and results from the

final step, which implements the periodicity conditions at unit cell side walls for general array

radiators.
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IX. Validation - General Array Problem

The third and final stage of computer code development and validation implemented the

periodicity condition for unit cell side walls, removing the requirement that the radiators be

separated by conducting walls. Initial validations were performed for open waveguide arrays

using the previous chapter's results. Test cases for arrays of microstrip patches and monopole

arrays were used for further validation, the latter including a hardware experiment. Last, perfor-

mance predictions for flared notch and printed dipole arrays are presented to demonstrate the

method's versatility.

9.1. Computer Code Implementation

A FORTRAN program named PARANA (phased array antenna analysis) implements the

general array problem solution. Figure 42 is an outline of the program's actions. Up to step

IV.C. it is essentially identical to CAVIARR, except that a listing of image edges is created in

step III. These identify the -x and -y boundary counterparts tfr each edge on the +x and +y

unit cell walls. This places an additional requirement on the geometry file - the unit cell bound-

ary nodes must be tagged so that these edges can be identified. In addition, it requires the mesh

generator to create the grid in such a way that the surface mesh on opposing faces is identical.

Although the CAD software (I-DEASTM [441) does not have any provision for enforcing this

requirement, it results naturally when the mesh areas and constituent curves are defined in

consistent and logical order.

In step IV.C. I., the calculation for the radiation boundary terms of SE is slightly modi-

fied to include special handling for -x and -y boundary edges, as discussed in Section 6.4. Step

IV.C.2. is a straightforward implementation of the algorithm shown in Figure 17. One of its

effects is to zero out the rows and columns of SEE corresponding to +x and +y boundary edges.
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I. READ INSTRUCTIONS AND OPTIONS

II. READ PROBLEM GEOMETRY

III. CREATE EDGE-BASED GEOMETRY AND LIST OF IMAGE EDGES

IV. FOR EACH FREQUENCY:

A. COMPUTE TERMS OF SEE ACCORDING TO (20), (22)

B. FOR WAVEGUIDE A:

1. COMPUTE INCIDENT CURRENT VECTOR FROM (33)

2. COMPUTE TERMS OF SE! FROM (34)

C. FOR EACH ANGLE:

1. COMPUTE TERMS OF SEJ FROM (51) USING OVERLAP ELEMENTS

2. IMPOSE PERIODICITY CONDITION ON SEE ACCORDING TO FIG. 17

3. ELIMINATE ZERO ROWS & COLUMNS FROM (SEE + SEJ

4. SOLVE (SEE + SFJ ) E = Einc FOR E

5. RESTORE BOUNDARY EDGES

6. COMPUTE REFLECTION COEFFICIENT AND MODE
EXCITATION COEFFICIENTS FROM (36)

7. COMPUTE ELEMENT FAR FIELD AND TRANSMISSION
COEFFICIENTS FROM (52)-(55)

Figure 42. Solution Procedure in Program PARANA

Step IV.C. 1. had a similar effect on SEJ. Before starting the matrix solution, the matrix is

compressed to eliminate zero rows and columns. After the matrix is solved, the periodicity

conditions are used to solve for the field along the +x and +y boundary edges.

9.2. Waveguide Arrays

The PARANA code is also capable of modeling open-ended waveguide arrays, although
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less efficiently than CAVIARR. A comparison between the two was a means for verifying the

periodic boundary condition while keeping all other details of the problem and solution the same.

Figure 43 is the tetrahedron mesh used as the input to PARANA. It is a shallow slice of the unit

cell in free space outside the waveguide, above the ground plane. The shaded area identifies

those nodes and cells bordering on the ground plane. Contrast this to the CAVIARR geometry

model (Figure 33b), which is a slice of waveguide below the ground plane.

The test case parameters were: a = .3Xo , d, = .88Xo ; dy = .733Xo and T = 600

(equilateral lattice). Figure 44 compares the computed results from the two codes for scanning

in the H-plane (x-z plane). The fact that they are essentially identical is evidence that the periodic

boundary condition is working as proposed. The results for E-plane scanning were similar, with

the same degree of agreement between the two codes.

A second waveguide test case was a rectangular lattice of rectangular waveguides. The

lattice dimensions were the same as the waveguide size, i.e.: a = d, = 23mm and b = d -=

10mm. The finite element mesh was similar to Figure 30 except that there were three layers of

cells, each with the same thickness. The perimeter edges of the first layer were tagged as con-

z

ZX
4--

z

Figure 43. Finite Element Mesh for a Skewed-Lattice, Circular Waveguide Array Unit Cell
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Figure 44. Circular Waveguide Array Active Reflection Coefficient - Comparison of Results
Using Cavity Array (CAVIARR) and General Array (PARANA) Models

ductors to indicate that the mesh extends part way into the waveguide. The perimeter edges of

the other two layers were tagged as unit cell walls. The calculations by PARANA for 10 GHz,

shown in Figure 45, are again essentially the same as the CAVIARR results. This test case

illustrates some potentially important flexibilities of the implementation: the mesh may extend

into the feed waveguide; and the feed waveguide may adjoin the unit cell boundary.

9.3. Microstrip Patch Array

The first of four demonstration cases uses a simple rectangular microstrip patch on a

substrate that is thick enough to support a surface wave in the dielectric. The geometry, shown

in Figure 46, has the dimensions (in wavelengths) used by Pozar in MoM calculations [451. The

substrate has relative permittivity of 12.8 to represent GaAs. Since the input impedance of the

patch is very low (less than 5fl) due to the substrate thickness, it presents a large mismatch to the

coaxial feed. Consistent with [451, the active reflection coefficient is normalized using:
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This measure discounts the effect of the feed impedance mismatch to more clearly reveal the

effects of scanning. Figure 47 compares the PARANA (HFEM) and moment method calcula-

tions. The agreement is within approximately 7%, with the greatest difference at the angle where

there is a scan blindness due to a surface wave in the dielectric slab. This discrepancy may be

due to the feed modeling ([451 used an idealized probe feed). The fact that the PARANA code

is predicting the existence of the trapped surface wave is a further confirmation that the periodic

boundary conditions are effective and correctly implemented.

9.4. Clad Monopole Array Experiment

A candidate antenna design for a space-based radar, proposed by Fenn, was a planar

array of monopoles above a ground plane (461. Each monopole is simply an extension of a

Z
w
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U-w
0o 0.6
z
0

W 0.4..J

--

- ozar (MoM)

0 - . HFEM

0 10 20 30 40 50 60 70 80 90
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Figure 47. Active Reflection Coefficient for Microstrip Patch Array, E-Plane Scan
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coaxial waveguide's center conductor. Fenn's MoM analysis was adequate for the bare mono-

pole, but not for one with a dielectric sheath, or cladding. The sheath, which can be simply an

extension of the coax insulator, is an important enhancement to the monopole design because it

increases the bandwidth substantially.

9.4.1. Initial Validation. For a first validation check, PARANA calculations were

compared to Fenn's calculations for .25Xo-long monopoles arrayed in a .5Xo x .5Xo lattice.

Figure 48 shows the active reflection coefficient vs. scan angle. The essential scanning charac-

teristics are verified, although there is some discrepancy at the angles where the reflection coef-

ficient is very small. This is at least partly due to a simplification in Fenn's MoM model: It

used an assumed form of current distribution (piecewise sinusoidal) on the monopole that is not

allowed to change with scan angle. Herper and Hessel used the same simplification, and showed

a large disparity between calculated and measured results in the vicinity of 600 1471.

9.4.2. Bandwidth Enhancement with Cladding. Figure 49 shows one half of the tetrahe-

dron mesh used by PARANA for the following test case: The monopole (15.875mm long) is

represented as a void extending through the mesh from top to bottom. Shading has been added

to the figure to identify the cells comprising the dielectric cladding (Teflon, Er= 2 .1). The

remaining mesh cells are free space. The lattice is triargular with dx=36mm and dy=31mm

(nearly equilateral). This interelement spacing allows scanning over the 0<900 hemisphere

without grating lobes for frequencies up to 4.8 GHz.

Figure 50 shows contour plots of I R vs. scan aný', and frequency for clad and unclad

monopoles. These calculations are for the (A=90' scan plane, but similar results would be ob-

served for any scan plane due to the equilateral lattice. Both arrays achieve an acceptable reflec-

tion coefficient (IRa I <:.33, or VSWR <2:1) over only a very limited range of scan angles near
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Figure 49. Finite Element Mesh for a Clad Monopole in a Triangular Lattice
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0=60'. The clad monopole array appears to have nearly twice the bandwidth of the unclad array

at 0=600. This simple example case demonstrates the usefulness of this code for investigating

radiator designs - the improved (clad) radiator could not be simulated with existing method of

moments codes.

9.4.3. Experiment. A 121-element clad monopole array was fabricated using the same

lattice parameters (dx=36mm, dy-=31mm) in an isosceles lattice. The monopole element

simply an unmodified SMA connector. When installed in the 1/8"-thick Aluminum backplane,

the conducting monopole and dielectric cladding extend 14.7mm and I 1.8mm, respectively,

above the ground plane.

The array layout is sbown in Figure 51. The measurement procedure consists of connect-

m - -7 -6 -5 -4 -3 -2 -1 0 1 2 3

n i 3
. ' " 9" .' ( .. 4 o . 9 " .

. .. . . . . .r .

*0" 9 0 ; 9; " 0 "" 9

REFERENCE
ELEMENT

Figure 51. Experimental Array Geometry used for Coupling Measurements
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ing the center element to port #1 of a network analyzer, then connecting each other element in

turn to port #2 and measuring the coupling coefficient C,,,

The active reflection coefficient as a function of angle is given by

Ra(O',4) - E E Cmn e-Jx(inax+ ndyc~toY)e-Jfyndy (66)
m=-o n=-oo

Once a finite number of Cm.'s are found by measurement, an approximation to Ra may be

computed for all angles. Figure 52 compares measured results and PARANA calculations. The

oscillation (with angle) of the measured data about the actual Ra was expected due to the finite

array size.

These results, combined with the earlier waveguide and microstrip patch results provided

the validation for the PARANA code. The final two radiator designs discussed next are attempts

to exploit the code to assess the properties of radiators for which results are not available by other

computational methods.

9.5. Printed Dipole Radiator

9.5.1. Element Design. The design for the dipole element shown earlier in Figure 2

follows general guidelines given by Edward & Rees [6]. Its height is .25;o; its overall length

is .5Xo and its arms are .05Xo wide. The design center frequency is 4.8 GHz, giving X0=

62.5mm. The substrate material chosen for this case is 50 mils thick with relative permittivity

of 10 because such material is readily available and it provides a good scaled representation of

1001im GaAs (Gallium Arsenide) at millimeter wave frequencies.

The actual dimensions used for this test case are shown in Figure 53. Figure 54 is an

exploded view of the tetrahedron mesh used as the input to PARANA, showing the three mesh

regions corresponding to the substrate and the two air regions on each side filling the unit cell.
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Figure 52. Measured and Computed Active Reflection Coefficient vs. Angle
for Clad Monopole Array Experiment

The array lattice is square, with .5Xo inter-element spacing. Note that the mesh is denser in the

dielectric slab (by a factor of Er 112 ), and gradually relaxes going out towards the sides of the unit

cell. The dipole and balun are metallized (or photoetched) on opposite sides of the substrate.

The slot in the dipole center divides that part of the structure into two coupled microstrip lines.

They are to be driven 1800 out of phase by the balun. The dipole width is chosen as three times

the balun width so that it provides a ground plane for the microstrip lines comprising the balun.

In the design shown in Figure 53, the first arm of the balun is a linear taper from microstrip line

widths corresponding to 500 (the same as the coaxial input) to 800 (the narrow end). The second

and third balun arms must have the same characteristic impedance as the coupled microstrips, and

values below 800 require extremely narrow slots that are difficult to construct given the toleranc-

es of photolithographic processes. The slot length is approximately 1/4 guide wavelength from

its closed end to where it crosses underneath the microstrip line. Similarly, the microstrip line
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Figure 53. Printed Dipole Radiator Design

Figure 54. Exploded Finite Element Mesh for Printed Dipole Radiator

85



length is 1/4 guide wavelength from the slot to its open end, but it is reduced by an effective

length using an approximate formula due to Hammerstad [481 (see also [49:1901).

9.5.2. Calculations. Initial calculations of Ra vs. frequency revealed that the design in

Figure 53 was a poor radiator, with IRaI greater than .8 at the design center frequency (4.8

GHz). Slightly better results were obtained by scaling the height by .8 so that the overall height

was 12.5mm (.20XO) and then reducing the dipole width from .4Xo to .33Xo. Figure 55 shows

I R.I vs. frequency for both dipole widths with the 12.5mm height. Unfortunately, this printed

dipole has not been tested as an isolated radiator on high-permittivity substrates, so it is not

known how much of the mismatch is due to array effects vs. feed line mismatches. Nonetheless,

the scanning properties may still be evaluated, normalizing the active reflection coefficient using

(65). The results for 4.8 GHz, shown in Figure 56, indicate that there are no scan blindnesses

in either the E- or H-plane (the E plane is the plane containing the substrate).

1
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ILuJ
0
oo 0.6
Z
0
o 0.4

LU Length

w 0.2 I> •- 40X.40 Length.2 -•k, .33 X0 Length

0 _ _
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Figure 55. Computed Active Reflection Coefficient at Broadside Scan for Reduced-Height
(12.5mm) Printed Dipole for Two Dipole Lengths
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Figure 56. Computed Active Reflection Coefficient (Normalized) vs. Scan Angle
for Reduced Height (12.5mm) Printed Dipole, 4.8 GHz

9.6. Flared Notch Radiator.

9.6.1. Element Design. The basic idea behind the flared notch radiator shown earli,ýr

in Figure 1 is a slotline, gradually opening out to provide a tapered impedance match to free

space. There do not appear to be any specific design rules 150], but generally, the longer the

flare, the greater the bandwidth. For purposes of this study, the exponential flare given by

Choung & Chen was selected [511.

Figure 1 showed the slotline being fed by a microstrip line, which is in turn fed by a

coaxial cable. This is a form of balun (the same arrangement used for the dipole in the preceding

section) matching the balanced coax to the unbalanced slotline. An alternative balun design is

based on a new coplanar waveguide (CPW)-to-slotline transition that terminates one side of the

CPW in a broadband open circuit 152]. This design has the advantage that only one side of the
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substrate is metallized, reducing the number of steps in fabrication and eliminating the possibly

of registration error. The metallization pattern for a single flared notch radiator is the shaded

area in Figure 57. The test case used a 50-mil thick substrate with relative permittivity of 6.0.

The flare length and mouth width are 33.3mm and 30.0mm, respectively. The flare shape is

given by

w (z) = woexp -.z. In [WO (67)

where wo and wm are the widths at the slotline an the mouth and L is the flare length.

9.6.2. Array Performance Calculations. One of the geometry models used as the input

to PARANA is shown in Figure 58. As was the case with the dipole element, the mesh is denser

in the substrate than in the free space regions. The unit cell size is dx=36mm and dy=34mm

(rectangular lattice). A second model (not shown) used an equilateral triangular lattice with

dx=62mm, dy=36mm and,= 60 '. Both of them used feed waveguide dimensions corresponding

Wm

METALLIZATION

OPEN CIRCUIT

Y
Figure 57. Flared Notch Element Design
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Figure 58. Finite Element Mesh for Flared Notch Radiator (Rectangular Lattice):
(a) Unit Cell Showing Coax Aperture; (b) Substrate Surface Mesh

to APC-3.5 coax (a=.75mm, b= 1.75mm).

The broadside (0o=0) active reflection coefficient is shown as a function of frequency in

Figure 59. These indicate that the radiator is capable of very broad bandwidth, but the skewed-

lattice array has a resonance effect that causes a blindness near 4.25 GHz. The rectangular-lattice

array is a very promising design, since its predicted bandwidth of greater than 50% is difficult

to achieve in an array.

The active reflection coefficient vs. scan angle for the rectangular-lattice array is shown

in Figure 60. From the low (3GHz) to the center (4GHz) of the frequency range, it behaves

well, but at the high end (5GHz) it displays blindnesses in both scan planes (the E plane is the

plane containing the substrate).
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Figure 59. Active Reflection Coefficient vs. Frequency for Printed Flared Notch Arrays

9. 7 Summary

The results of this chapter have proven the validity of the essential feature that makes the

hybrid finite element method applicable to infinite array analysis: the periodic boundary condi-

tion implemented by "wrapping" opposing unit cell edges onto each other with an appropriate

phase shift. It was successful for both rectangular and trapezoidal unit cells, the latter applying

to skewed array lattices. The microstrip patch array test case showed that it correctly predicts

the behavior of surfaces waves in a dielectric layer on a ground plane. The monopole array test

case further demonstrated the method's ability to deal with inhomogeneous dielectrics. Most

importantly, the same computer program with no changes whatsoever executed the computations

for every one of the seven separate array/radiator geometries discussed in this chapter. The only

things that changed were the finite element model created in I-DEASTM and the user instructions
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identifying the feed waveguide type and location and the array lattice parameters. Thus it is

demonstrated that the finite element method has unparalleled versatility for phased array analysis.

The question of efficiency is addressed below in Table II, which summarizes the time and

storage requirements for most of the test cases discussed in this chapter. The total run time

(tabulated figures are for a VAX® 4400 mincomputer whose performance is rated at about 17

MIPS) is dominated by the matrix solve time, which was as high as 7 hours per point for the

printed dipole (the most time-consuming case). The most time-consuming part of the matrix fill

is the calculation of the radiating aperture terms. It is highest for the microstrip patch because

that case had relatively more edges in the aperture than did the other cases. The fact that these

computations could be performed on a typical minicomputer are encouraging, although whether

or not one regards them as "efficient" depends on the difficulty of solving the design problem by

other means.

Table II. Mesh Size, Execution Time and Matrix Storage for PARANA Test Cases

Test Unit Cell Mesh Mesh Iter- Fill Solve Matrix
Case Vol. (X3) Cells Edges ations Time Time Size

(mrin.) (min.) (Mbytes)

Microstrip Patch .01b 4291 4862 2500 44.5 198 6.2

Clad Monopole .063 3092 3487 19000 7.1 201 0.7

Flared Notch with .17 4443 4778 18000 8.7 124 0.8
Triangular Lattice

Flared Notch with .19 4845 5271 23500 9.5 196 0.9
Rectangular Lattice III_

Printed Dipole .05 6659 7447 39000 20.6 428 1.6
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X. Conclusions and Recommendations

This research project began with a novel concept for modeling infinite phased arrays and

concluded with a demonstration of its capability. The work in between involved the entire

process of electromagnetic predictive code development: casting the physical problem as a

mathematical boundary value problem; mapping the latter to a linear system using finite element

and moment methods; designing, writing and troubleshooting the general-purpose computer

program; adapting the commercial software for geometry generation; and finally, validating the

code. Many difficulties needed to be overcome, both expected and otherwise; yet, other expected

problems proved inconsequential. This chapter attempts to summarize those findings and to

assess the implications of the results to future work.

10.1. Conclusions

10.1.1. Theory and Formulation. Thv successes of other researchers in applying the

finite element method to time-harmonic electromagnetic problems was reason to believe that it

would also succeed for the phased array problem. Nonetheless there are always doubts su;-round-

ing any such implementation given that the problem does not have the properties of self-adjoint-

ness or positive definiteness. The attendant risk that the iterative matrix solver might converge

to a false solution, or not converge at all, did not materialize. The conclusion is that the weak

form and Galerkin's method are appropriate to this class of problems.

There have not been any cases that would indicate instabiity or non-uniqueness, which

are always concerns when the properties of fields in two or more regions must be met. A unique

solution generally requires that continuity of tangential electric and magnetic fields must be

independently enforced. The fact that this problem involves boundaries that are planar and

exterior solutions in terms of discrete modes whose tangential field components are dependent
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evidently circumvents that requirement.

10.1.2. Implementation. Three-dimensional finite element problems involve very large

systems of equatio, s. As seen repeatedly in the previous four chapters, even relatively small

devices result in grids with thousands of edges, usually because of the need to capture fine e -tails

in the geometry. The uncertainty of whether the available computers could solve the resulting

matrices in a reasonable time has been resolved and the validation tests indicate that most practi-

cal array radiators may be analyzed using typical minicomputers.

The three codes TWOPORT, CAVIARR and PARANA are geometry-independent, within

the constraints of the generic classes of problems they are designed to solve. They exploit the

commercial CAD software that benefits from decades of research oriented towards mechanical

engineering applications. Two observations regarding that software are: (a) it is capable of

generating grids suitable for phased array analysis; and (b), of much greater significance, it

removes the geometry generation from the electromagnetic problem so that the codes may encom-

pass far broader problem classes than previously attei;.,ted.

10.1.3. Validation. The extensive set of validation cases that were used to test the three

computer codes demonstrate the effectiveness of the key elements of the solution approach. The

interior finite element solution accurately incorporates electromagnetic boundary conditions at

perfect conductors (including sharp edges) and dielectric interfaces. It is evidently free of spuri-

ous, non-physical solutions, indicating that the divergence condition is also satisfied.

The waveguide mode integral equation was shown to be an effective mechanism for

enforcing field continuity at waveguide apertures. Its payoff is in providing an accurate means

for modeling antenna feed structures.

The hybridization of the periodic integral equation with the finite element solution was
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shown to correctly enforce the radiation condition above the infinite array. Its implementation

ion in the CAVIARR code allowed the correct prediction of active reflection coefficient for a

variety of radiator types, including cases involving scan blindnesses.

The implementation of a periodic boundary condition on a three-dimensional finite

element problem is evidently a first. The success of the final stage of this work hinged entirely

on that single unproven algorithm and the question of whether or not it would conflict with the

periodic integral equation. Thus, the most important finding is that the algorithm involving

boundary "wrapping" works as proposed, and complements the periodic radiation condition.

10.2. Recommendations

The recommendations fall into three broad categories. The first deals with hardware

experiments needed to demonstrate the potential for design, in contrast t(. the analysis that was

the main subject of this project. The initial designs for the printed dipole and flared notch

radiators were a first cut, and their performance leaves much to be desired. Further experiments

will be necessary to: first, perfect the design for single, isolated radiators; second, identify the

geometry parameters that influence their impedance match in the array environment; and finally,

use the codes to optimize those parameters for best performance over some specified range of

scan angles and frequency.

The second category deals with possible improvements and enhancements to the computer

codes. For example, the TWOPORT code could easily be extended to deal with multi-port RF

devices. The inclusion of that feature in PARANA would allow the simulation of radiators that

have more than one feed port, such as dual-polarized and multiple-frequency antennas. All three

codes would benefit from faster matrix solution, which could result from improved iterative

methods, perhaps using preconditioning.

The third and final category of recommendations deals with related or similar electromag-
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netic problems that may benefit from application of hybrid finite element methods. One that is

a particularly straightforward extension of the present work is gratings and frequency selective

surfaces. That problem may be addressed simply by replacing the waveguide feed with a second

periodic radiation condition and an incident field in the form of a plane wave. A more difficult

extension, but one with iiany practical applications, is a finite-by-infinite array. Such a model

could be used to predict the radiating properties of line-source arrays or to assess edge effects in

planar arrays. Last, the calculation of scattering from objects that include cavities, or of coupling

into circuitry inside those cavities are problems that may benefit from the use of the finite element

method to model the cavity interior, with an integral equation boundary condition at the aperture.

These problems are more easily addressed now because the present work has provided, among

other things, a body of well-tested computer routines for three-dimensional finite element and

waveguide mode computations.
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Appendix A

The Electric Field Functional

A. 1. Variational Principle vs. Weak Form

Publications dealing with electromagnetic finite element applications usually begin with

one of two forms of functionals2 with little or no discussion as to why one is used and not the

other. This appendix discusses their origins and the circumstances in which each is appropriate.

The conclusion is that the results of the two methods are indistinguishable for typical electromag-

netic radiation and scattering problems.

The first alternative is

F, (E) = 2J VXJJVxEk orE E dv +jkoqoJ(EXH).tAds (A.1)

al F

(see, for example, Jin & Volakis [531) where Q is the volume region over which the unknown

field is to be found and r is its enclosing boundary. The subscript v denotes that this functional

is the variational principle.3 The second alternative is

Fw(E) = 1J [VX .Vx _.koEr W.E dv +jkoiio (WxH) -Ads (A,2)
Ar 11

(see, for example, D'Angelo & Mayergoyz 1241). Here, W is a trial function whose form is yet

to be determined. The subscript w on F denotes the fact that this is the weak form.

2 A functional is a mapping from a space of functions to the complex numbers. It is usually

an integral containing an unknown function. The result of the integration is a single number, in
contrast to an integral equation, which maps the function into another function.

3 A variational statement may be either a variational principle or a weak form.
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The variational principle Fv has been deduced from a general from of energy functional

[541 and is used in conjunction with the Rayleigh-Ritz principle in order to form a system of

equations. The weak form is derived more directly by simply taking the inner product of the

operator equation with the trial function. It will be used in conjunction with the method of

weighted residuals to form the system of equations. In the case of Galerkin's method (a special-

ization of weighted residuals) the two forms may give exactly the same system of equations. But

in order to use Galerkin's method, the expansion function that is admissible in the original

problem must also be admissible in the adjointproblem.

The following section will discuss the meaning of the adjoint problem and what the

conditions are for self-adjointness as applied to the vector wave equation. The third will then

show that typical waveguide continuity conditions represent non-self-adjoint boundary conditions.

The last section will show that under the assumption that Galerkin's method is applicable, the two

formulations generate identical systems of equations.

A. 2. The Adjoint Problem

Before deciding whether to use (A. 1) or (A.2) one must know whether or not the operator

equation is self-adjoint. If not, then the properties of the adjoint problem must be determined in

order to ensure that the trial functions are capable of representing its solutions.

The operator equation is the time-harmonic, source-free vector wave equation for the

electric field in a linear, isotropic, inhomogeneous region:

-I - 2L(E) = Vx-VxE-koE rE= 0 (A.3)
Mr

Its inner product with an arbitrary complex function W is
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<L(E),W> = [VXiVXE-koWr * dv = 0 (A.4)
/Xr

Using a Green's identity (integration by parts) twice shifts both derivatives from E to W:

<L(E),W> VJJ [IVXE V xW* -korE' W dv
i J (A.5)

- r w*xVxE.i ds

r

E JJ ~.[x Vxiw'k~E:ri']*dv

(A.6)
-- VE J-E-xv~X'vx WJ*].h ds

From the definition

(L(E),W> = <(E,La( W)> (A.7)

it is evident that the term in brackets in the first integral of (A.6) is La, the adjoint operator. It

is simply the wave equation with the constitutive parameters replaced by their complex conju-

gates. It is now clear that W must be in the domain of the adjoint operator.

The definition of self-adjointness is L=La, which obviously cannot be true if the problem

includes lossy materials. But it also depends on whether the boundary conditions are such as to

make the surface integral in (A.6) vanish, i.e.

~iIa*xvxE. fds -- xv xE" *.•ds (A.8)
r r

EJ ~ a* XH<i.Ads E HJ f~EIIZ ilds (A.9)
rA~rr Xr 9 r
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Suppose that all lossy magnetic materials are confined inside Q so that along the boundary r, the

permeability is entirely real. Then (A.9) is satisfied when Ea=E* and Ha=H*. Recall that the

time-harmonic and time-dependent fields are related by 155:15]

E(x,y,z,t) = / Re(Eejio1) (A. 10)

(boldface represents the time-dependent quantity; the expression for magnetic field is identical).

Evaluating (A. 10) at any point f along r, with Eo denoting E(?):

E(r,t) = v/2[Re(Eo)cos wt- Im(EO)sinwt] (A.11)

and assuming that Ea=E*

Ea(r,t) = F2-Re[EkO eJwt} = F2-[Re(Eo)cosowt + Im(Eo)sinw t]

= v'2Re[Eoe -i•] (A.12)

= E(r,-t)

In other words, the adjoint fields are time-reversed versions of the original fields. They carry

power across the boundary in the opposite direction and they encounter materials that have gain

instead of loss. This is the physical interpretation of the adjoint problem, and is consistent with

the property that if the operator L is causal, then the operator La is anti-causal [56:3561.

Notice that if the boundary r is comprised entirely of perfect electric and perfect magnet-

ic conductors, then (A.9) is always satisfied because there cannot be any transfer of power across

such boundaries. This leads to the suspicion that the boundary conditions that will cause non-

self-adjointness are those open boundaries where conditions of field continuity are to be enforced.

Section A.4 will demonstrate that this is indeed the case for the waveguide/cavity apertures that

are considered in the main body of this report.
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A. 3. Continuity Conditions for Waveguide Apertures

For the waveguide continuity problem, the boundary r reduces to the waveguide aperture

rA. Taking Ea=E* and HIa=,H* the following form is equivalent to (A.9):

JE* (flxH)ds JE.-(A xH* )ds (A. 13)

PA rA

(again assuming that ,r is real along r). Consider a waveguide whose axis is the z axis and

which joins the volume (t through an aperture in its end wall at z=O. It is assumed to be match-

terminated at z < < 0. The aperture field due to the dominant mode and its conjugate are

E= g°(1 +Co) (A.14)

H = ×xg•Yo(1-Co)
(A. 15)H * -- 2 x 0Yo( I - co*

where go is a transverse mode function, Yo is the modal admittance and Co is an unknown

coefficient. The outward normal to 0 is fh=-2, so the left and right sides of (A. 13) give

JJE* *(fixH)ds = Yo(I+Co0 )(1-Co)JJ go0 J2 ds (A.16)

rA "A

E.xffH*)ds = Yo( +Co)( -C)ff 0I12ds (A.17)
rA rA

These two are only aqual if CO is real, which is not generally the case. Therefore, the continuity

condition across a waveguide aperture will render the boundary value problem non self-adjoint;

the functional (A. 1) is not appropriate even when there are no lossy materials; and the weak form
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(A.2) should be chosen.

A. 4. Galerkin 's Method vs. Rayleigh-Ritz

In the main body of this report, the finite element method is used to produce a system

of equations from the weak form functional. The field is represented by a summation of un-

known complex coefficients with known, linear vector functions:

N

E = e. ((x,y,z) (A. 18)
S=1

For the expansion functions to be admissible, they must be in the domain of the functional.

Linear functions meet that requirement since their first derivatives are continuous (integrable).

The residual error is defined as R=L(E)-L(E). N weighting functions will be chosen,

each of which is orthogonal to the residual so that (R,*r)=O, giving the system of N equations

0 =E e, V X•Wr"VXs-ko rWrs dv
s=1 Ar V-r (A . 19)

r

The choice *,r=ý satisfies the orthogonality requirement, but it is also required that Or be an

admissible expansion function for the adjoint electric field. Starting with the adjoint operator

equation, forming (E,La(W)) and using the Green's identity once gives

=Lu [ x "Vx -ko V E r W E dv

ii (A.20)
- J EXVX W* fids
r

which makes it evident that expansion functions for W must have continuous first derivatives.

Therefore, the same expansion functions are admissible in both the original and the adjoint

102



problems. It is this fact that allows Galerkin's method to be employed.

Consider the variational functional (A. 1) with the expansion (A. 18) for the electric field:

N N12
v 2' erj e es V r VX s -rr' r* dv

r1 s= r

N 
(A.21)

+Jk°n°EerJJ ('rXH).flds' r=1,2,...,N
r=1 r

The Rayleigh-Ritz method equates the stationary point of F, to the minimization of the above

with respect to each of the coefficients er, i.e.

aFV(E)
bFv(E) = 0 * _-___ = 0, Vr (A.22)a er

Carrying out the partial derivatives in (A.21) gives

= eJVXs 2

S=1 I(A.23)

+iJkoOjj (ý,XH)×fids, r=1,2,...,N

r

which is identical to (A. 19) with *r replaced by ýr" This shows that the systems of equations

resulting from the variational principle and from the weak form are identical. Thus, under at

least some circumstances the distinction between the two forms is inconsequential, and the

variational principle may also be used.

103



Appendix B

Waveguide Mode Function Inner Products

B.1. Approach

The waveguide interaction terms require the computation of two surface integrals ý%i and

*'. from (36) and (37) where s and i are the edge and mode indices. Each may be found by

summing the contributions from the individual triangles that share edge s, e.g. for triangle k:

•(k) =L,
4ksi = '-k ) f)[gix(f2TT3 -fAT2 3)+giy(AT 22 -f2 T12)dxdy] (B3.1)

Ak

Ls is the edge length, ft is the outward surface normal (into the waveguide), Ak is the triangle

area, f, and f2 are the linear scalar finite elements associated with the nodes bounding the edge

and T is the 3x3 simplex transformation matrix for the triangle. When the integral is trans-

formed, dx dy -- 2Akdtldt2 and

Si L5 (a "t)[-T23 G. +1T13 G-2 + T 22Gl -Ty 2 G12 ] (13.2)

1 1-t1G'j= jat, I gi, tj dt2' , =x,y j=l1,2 (B.3)

0 0

Similarly,

s Ls[ T2 2 G. 1 T12 G. 2 + T 2 3 G 13 Gy2] (3.4)

The generic procedure used to compute the terms of the matrix SJE is outlined in Figure Bl. The

bulk of the computation is in step 2.b.ii, where the integrals Gj are calculated. In the case of

rectangular waveguide, they may be evaluated in closed form. For the other two waveguide
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FOR EACH APERTURE (A,B):

FOR EACH MODE (i):

1. COMPUTE PROPAGATION CONSTANT, MODAL ADMITTANCE

2. FOR EACH TRIANGLE (k) IN APERTURE:

a. COMPUTE SIMPLEX TRANSFORMATION

b. FOR EACH EDGE (s) BORDERING THE TRIANGLE:

i. DETERMINE EDGE VECTOR ORIENTATION

ii. COMPUTE G 6 FOR ,=x,y andj=1,2

iii. ADD CONTRIBUTIONS 4l,i(k) and si,(k) to 4ý,s and 'P/s

3. FOR EACH EDGE (s) IN APERTURE:

a. FOR EACH EDGE (t) IN APERTURE:

i. ADD j ko no Yi 4ý.s *si I to S sE

Figure B1. Procedure for Matrix Fill Calculations Involving Waveguide Modes

types, circular and circular coaxial, they are computed numerically using Gaussian quadrature.

The remainder of this appendix discusses the details of those integrations. Expressions for the

mode functions, cutoff wavenumbers and modal admittances may be found in [171 and [28].

B.2. Rectangular Waveguide

The mode functions for rectangular waveguide will have indices m,n and p, where p= 1

or 2 for TE or TM, respectively. The vector components are

S= Cmnpx Cos ( Osin(n I) (3.5)

mnp = Cmp sin(W) cost !I) (B.6)

where a and b are the waveguide dimensions along the x and y axes, respectively. The normal-
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iztion coefficients ensure that the modes are orthonormal over the waveguide cross section.

The inverse of the simplex transform matrix, T", will give x and y in terms of tj, t2 and

constant coefficieiis:

x = a0 +aoIti+a 2 t2 (B.7)

Y = 00 + f 1 tl + 02 t2  (B.8)

Let ki and qi represent the following combinations of ai and fi

= yr °tir r[ 39)

m7rea nirfl,
+ (B.9O)

•i a b

m Wrai n wr8i (B. 10)

a b

In terms of these, the mode functions may be rewritten:

gmnpx = 'sin(4o+t 1 t 1 ++ 2 t2)-_sin(q0o+qlIti + 2 t2 ) (B.11)
Cmnpx 2 2

gmnpy = sin(O+kltl+t2t2)÷2sin(1O"I l + n2/2) (B.12)
Cmnpy 2 i(o4t-it)Pnloii7 2 2

Let Hý denote the integral

H I tj dt, J sin(ýO+4Itl + it-2)dt1  (B.13)

0 0

Hl is identical with 71i replacing ýj everywhere. Ht' and H.' are the same, but with I and 42

or "1, and n2 reversed. In terms of these, the integrals in (B.3) are

GxI = Cm.px(H1 - H0) (B. 14)
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GyI = Cmnpy(Ht +H ) (B.15)

Gx2= Cmnp, x(H - H;) (B3.16)

=Y Cmnpy(H I +H) (B3.17)

Finally Ht may be evaluated in closed form, but it must be accomplished separetely for several

special cases, as given below:

(a) general case:

Hý 1 - 2 12[cs(4°+41 )- cso°+*4 sin(o°+41 )]
1 3.18)

1

- i [COS(U 0 +4) -COS(4O+ 2 )+(Ul -2)sin(°+4i]
(Q I k2)2

s cti2b0, to4 0, a 2r4g IoIn 1 (for small values of t24w) (B. 18) is numerically unstable,

susceptible to large roundoff error and overflow):

Ht {I 2[cos(to+44)_ cos~o +ý4 sin(4o+4,)] (13.19)
SI I

-Cos Q 0 + 2 ) +(tI - t 2 )sin([o + Z)I

(c) I421"41:

H4 41= (4k1 +6t2 -tI4 2 )COS(4 0 ) - (44 +642 )C0S(4 0 ÷ ,)
44, (B3.20)

-(2k2 +44,4 2 )sin(o) - 2( I+ Z1-,)sin( 0+t,)}
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(d) I t 1:

Hý coso- It sinto
4 (221)

21

-(t1-1 2)A[cOs(4o+4 1)-cOs(4o+4 2 )+(4t-4 2 )sin(4o+4 1)}]

(e) I2 -42)1, 1 l 1 :

Ht = sin 4o + (ti +t)os(o) (.22)

Note that the last four are correct in the limits as those quantities specified as much less than

unity go to zero. Precedence is given to the five formulas in reverse order, checking for condi-

tion (e) first, and executing (a) only when none of the others (d), (c) or (b) are true.

B. 3. Gaussian Quadrature Integration

For circular and coa-i~d mode functions the inner products (B.3) may not be accom-

plished in closed form, so they have been evaluated numerically using Gaussian quadrature.

Quadrature formulas only apply strictly to one dimension, but are easily extended to two dimen-

sional integration over rectangular areas. To use these, the triangle's geometry is transformed

to a unit square, using an approach suggested by Stroud & Secrest [57]. The transformation to

simplex coordinates mapped an arbitrary triangle into one with vertex coordinates are (0. rn). (0,1)

and (1,0) in (t1,t2) coordinates. The second transformation is given by

t2

U, = t1  ; u2 = (1 , ,t 1  (B.23)

I , t1 = 1

The Jacobian of this transformation is (l-t,-), so that a typical integral term transforms into:

108



G,= f 1 dt, Jg(Ijt 2 )dt I = udu I J -u,) 2 g(u 1 ,u2 )du2 (1.24)

0 0 0 0

Let Uk and u, denote the one-dimensional quadrature sample points along ul and u2, respectively,

with Wk and wm the corresponding weights. Then the integral is approximated by the sum

Q Q
G, E Wk Uk E Wm(l -U.)2 g(Uk,Um) (B.25)

k=1 m=1

where Q is the order of the quadrature formula. See, for example, [571 or [58:8871 for tables

of weights and quadrature points.
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Appendix C

The Periodic Integral Equation

Conventional derivations for the scanning properties of phased array antennas are often

given in terms of "Floquet modes," which are essentially plane waves propagating in several

discrete directions away from or towards the array. That derivation is an analogue to ordinary

waveguide modes, and was developed as convenient means for deriving mode-matching solutions

to radiation from waveguide arrays. This appendix presents an alternative derivation using

Fourier transforms that may, in some cases, lead to greater insight than the mode-matching

solution.

This derivation proceeds from the integral equation for an arbitrary sheet current. It is

then specialized to the case of an infinite periodic sheet current through the periodicity condition.

Its spatial frequency domain representation is then obtained through straightforward application

of Fourier transform theorems and a Fourier-Bessel transform for the free space Green's function.

The inverse transform then yields the desired result, which is an expression for the integral

equation not as a continuous integral, but as a summation over sample points in spatial frequency.

An extension of this derivation for skewed array lattices is also provided. The results of Galer-

kin's method are specialized to the linear vector finite element functions and analytic expressions

for the resulting inner products are given. Finally, the derivation in terms of Floquet modes is

shown to provide an identical system of equations.

C.). The MFIE for Planar Current Sources

The objective of this section is to obtain an integral equation for the fields in the half

space above the radiation boundary due to the fields below it. The use of the equivalence princi-

ple will simplify the derivation. The boundary, which will be taken to be located at z=O,
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supports equivalent currents M and J. The source of these are the tangential fields just below

the boundary:

M= x E(z=) (C.1)

J = XH(z=O0) (C.2)

The equivalent problem in the z > 0 half space also sees a conducting boundary, but it supports

-M and -J. This equivalent current is the source of an electric vector potential, F:

-00

:-r) " L J -(-J ) G(-- )dx'dy' (C.4)
-00

G(:_W) _ e-kIT'-r (C.5)

I -- J

where r' and r denote, respectively, source and observer coordinates, and G is the time-harmonic

free space Green's function. Here, r' is confined to z=0, but r may be anywhere above z=0.

The magnetic field at the observation point is [59:36]:

HI(G) = -j + VV , F (C.6)
jWUE

An integral equation is obtained by applying a boundary condition to the above radiation integral.

Specifically, the total tangential magnetic field at z=0 is H = ×xJ:

- = 21 [ k2F +• + + [ F -a 2 Fx (C7)
jxl aX 2  Oxay ay 2  axay
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Note that an electric current source in the z=O plane produces a magnetic field that is entirely

normal to that plane. Hence A(z=O) = 2Az , so J does not contribute to Ht(z=O) and (7) is

a complete expression for the integral equation. The next section will specialize this to the case

in which M is an infinite periodic source.

C. 2. The Periodic Magnetic Field Integral Equation

According to Floquet's theorem, the fields and currents anywhere on and above an

infinite periodic array must obey the relationship

't(x+mdax,y+ndY) = $,(xy)e ei-j~yndy (C.8)

where -t may be any of E,H,M, or F, d, and dy are the lattic spacings in x and y and Vx and Oy

are the phase shifts necessary to produce a plane wave propagating in the 0o,00 direction:

OX = k sin 0o cos4o (C.9)

4'y = k sin 0o sinko (C.10)

Let M• (X,y) denote a unit cell magnetic current that is equal to the source distribution within the

rectangular area -d,•x<x d_ and -dy <y:! dy and zero elsewhere.

Consider an infinite two-dimensional sequence of Dirac delta functions located at lattice

points x =rmd., y=ndy for -o <m,n< oo. Figure Cl illustrates that the effect of a two-dimen-

sional convolution of this Dirac sequency with the unit cell current distribution is to replicate the

current distribution around each of the lattice points. If each impulse is also weighted by the

complex exponential representing the beam steering phase, then M is:

M(x,y) = M, * , ( (x-md,,y-nd.)e -J x e -JYy (C.11)
m n

where * denotes the convolution operation. This is an alternative form of Floquet's theorem.
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UNIT CELL
FIELD 2D IMPULSE

SEQUENCE

o

OTAL FIELD

Figure Cl. Two Dimensional Convolution of Unit Cell Field with Dirac Impulse Sequence

(All summations may be assumed to have limits of -oo to + oo unless otherwise noted.)

Let _M denote the two-dimensional Fourier transform of the magnetic field with respect

to the spatial frequency coordinates k, and ky (underbar will be used to denote transformed

quantities):

M(kx'ky) = J J M(xy)e kxxe kyYdxdy (C. 12)
-00a

00

= 1rr-jk .,x -jk C.3l(X' y) 2 l [[l(kx,,kyl e- e- Y'ydk,:dky (C. 13)

-OD

The following four properties of Fourier transforms are required (see, for example [30:199-200]):

-9_F * G) (C.14)
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.riF(x)e-j"x} = F_(k . c) (C.15)

, ,- } = -jkjF (C.16)

21r (k_2*

2 5(x-nd) 1} = (C. 17)

(The last one is a form of the Poisson sum formula.) Substituting (C.9) into (C. 10) and using

properties (C.14), (C.15) and (C.17) results in

Ml(kxk,) = M -•ayL - E 6(kx -kx'ky-kyn) (C. 18)
uc d y m nt

kxm - 2 -rm - x (C. 19)dx

kyn ((C.20)dy

The points k.m and kyn are sample points in the spatial frequency, or spectral domain. They may

also be recognized as the so-called Floquet harmonics.

When the source and observer art. both in the z=0 plane the Green's function is only a

function of x and y and the integral (C.3) is a convolution integral written as

F(x,y) = -L M(x,y) * G(x,y) (C.21)
4w

whose Fourier transform is

F_(kx,ky) = - -_. M G(k,,ky) (C.22)

The transform of the Green's function is found using a Fourier-Bessel transform [60:121, with

the remarkably simple result:
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G(kky k2w (C.23)

Using this with the derivative property (C. 16), the MFIE in the spectral domain is

fi xJ1 11 e[ (k2- k.k2,) F -k.,ky~~ F [(k 2-k 2)F -kxkyF 1  (C.24)

Taking the cross product of 2 with (C.24), substituting (C.22) for F, and using (C. 1):

2 k- k; k(k- 1 - (C.25)
2kKI) k2k ( 2~k)

= -k2k2-k_2 (C.26)

or in terms of the unit cell electric field:

j = ETE 6 (k,- kx,, ky - (C.27)
m n

I (k-k) kxky (C.28)
2kT"Lkxky (k2-k)

Finally, testing is to be carried out in the spatial domain, requiring the inverse transform of

(C.25). With the delta function in the integrand, that integration reduces to a sampling of the

integrand at each kxr and kyn:

= Tm nE c(kxm, kyn)e -jk.,x-e .jkV (C.29)
m n

This form of the MFIE is only valid for rectangular array lattices, but many actual phased arrays
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1 k.. , 1
(mn = -k 2kinxkynJ

use triangular lattices. The following section will show how (C.29) is modified to accomodate

skewed lattices.

C3. Skewed Array Lattices

Phased array antenna elements are usually arranged in a triangular lattice, formed by

shifting successive rows to the right or left by one half the column spacing. This allows a larger

inter-element spacing (hence fewer elements for a given aperture area) to cover a given scan

region without grating lobes.

Figure 12 shows an even more general case in which the shift between successive rows

is not necessarily one half the column spacing d.. The Floquet condition for this situation is

E(x+mdx+ndycot-y,y+ndy) = E(x,y)e J-jx('nd.,+ndycoty) e-J'y ndy (C.31)

or in convolution form

E(x,y) = E.u(x,y) b '(x-mdx-ndycot-,y-ndY)e -j"xe -j'yy (C.32)
mn n

The Fourier transform of (C.30) is required, but it may be obtained without directly performing

the integration. As in the case of the rectangular lattice, a result similar to (C. 16) is expected,

i.e. the unit cell transform times a series of spectral domain delta functions. The Fourier trans-

form pair (C.9) and (C. 16) have a unique interpretation in terms of direct and reciprocal lattices
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[61:94-981. The coordinates (kx,ky)=(2irm/dx,27rn/dy) are points in the reciprocal lattice corre-

sponding to (x,y)= (mdx,ndy) and (4ir2/dxdy) is the area of one of its unit cells.

In the skewed lattice, the coordinates of any element are integer multiples of the basis

vectors a and b:

b = dc d(C.33)-b I •d.,COt7 + Ydy

The basis vectors in the reciprocal lattice, 1 and # are found by solving

a C1 b . 1(C.34)

a = b oa 0

with the result

(C.35)

(C.36)

The spatial frequency coordinates corresponding to points in the reciprocal lattice are

S2irm (.7
kxmn = 27rf - (ma +nf) = (C.37)x dx

Iky/mn = 2  -9 (m f + ni)= 2rn _ 27rmcoty (C.38)
kym : Ty mt )-dy_ d,

The primes signify that these are the unscanned lattice points. The unit cell area in a skewed

lattice is the same as in a non-skewed lattice with the same d. and dy, so the spectral domain unit

cell area is also the same. The end result is that the Fourier transform of (C.32) is
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f k y = E c- -T E 6(.--tnk-yn C.39)
X Ym n

k, m n = 27m - k0sin 00 cos o0  (C.40)

kymn 2wrn _ 2irmcot-f - kosinO0osin•° (C.41)

The effect of beam steering is to shift all of the lattice points. The last three equations above

explain the origin of the Floquet harmonics for a skewed lattice, and agrees with the result given

by Mittra et. al. [62:15961. The relationship between 2 xH and E is still as given by (C.29),

except that the sample points are now k.,kym instead of kxm,kyn.

C.4. Expansion Function Fourier Transform

The electric field within the unit cell is expanded in known vector functions ý. with

unknown complex scalar coefficients e.. By linearity of Fourier transforms, the unit cell field

is

N

9u,= ess(kx,ky) (C.42)

where s is the two dimensional Fourier transform of ý.- These may be evaluated analytically

with the help of homogeneous coordinates within the triangles subdividing the radiation boundary

(the faces of those tetrahedra bordering on the boundary).

Suppose that within triangle k edge s goes between local nodes i and j. Then in terms

of the 2D homogeneous coordinates,

. L t (C.43)
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Let ri denote the Fourier transform of the scalar linear finite element defined at node i, denoted

fi. In the homogeneous coordinates, fi=ti and

00 1 1 -2
Ti = I t eti eJkyy dxdy = 2A I dt 2 I ti ejkýxeJkyY dt, (C.44)

-00 0 0

The factor 2A is the inverse of the Jacobian of the transform from (x,y) to (t1 ,t 2 . The inverse

coordinate transform is expressed in terms of six constants given in Appendix B, (B.7),(B.8).

Let B1 denote the following combinations:

B, = ,l kx + 01 ky 1 = 1,2,3 (C.45)

Then substituting into (C.44):

o jB -t2

Ti = 2Ae A eJB2t2dt2 j tie JBt"dt1  (C.46)

0 0

Five separate cases must be considered, depending on the range of the constants B1.

(a) general case

=2AeJBo -__j + jeJB2 + e JB(jB2 -2jBI +BIB 2 -B2) (C.47)

B B2 B2(BI -B2)' , B - B2)2

(b) 1131-132 < <I1

2AejBO J 1e jB2 A + B B2)2 - [2 2 3 12
B2  (C.48)

+ B l-eJ'(I -jB 1 ) }
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(c) B2 1«< <1

2AejB2 {I -ej" [( 2 B, + 3B 2 ) + B, (BI -B2) ]
IB 4 (C.49)

S[j(2B, + 3B 2 - 'B B2 ) -B,(B÷+2B2))

(d) B111<<<

2AeJBo fEB(B 2

- 4 (E j2 (JB!+2 )+
B 2  (C.50)

(2BB 2 +,6B2 -. 'BIB 2 ) ÷j(-2B, -B 2 +÷BB2B + 'B,)

(e) IBI1<<l and I1B1<<1

=2 AeJBo
TI = 120 (20 + IOjB1 +5jB2 -2BB 2 ) (C.51)

The small argument forms ensure numerical stability. The expressions for -r, are obtained by

reversing B1 and B2 .

C.5. Integral Equation from Floquet Modes

The following is a more conventional derivation of the periodic integral equation using

"Floquet modes." It follows the same general procedure used in deriving the integral equations

for waveguides.

The orthonormal vector Floquet modes 129:41-42] are analogous to waveguide mode

functions:

- ln kyn-•kxm] ei(k'•px+ky) (TE) (C.52)
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2mn 1 _kxra + _k_ eJ(kxmX+kyy) (TM) (C.53)

d xdy -_k_ xm + ky2 In

The corresponding modal admittances are

KpnKmnlkoiJo p= I (TE) (C.54)
Ypmn / kocmn 1)0 p=2 (TM)

Using the waveguide integral equation from Chapter IV (29) but expanding the mode sum over

three indices:

oaoa2

E Ypmngpmn I E•t gpmn ds - J = 0 (C.55)m=0 n=1 p=1 IrR

Et is the transverse (to z) unit cell electric field on rR. Due to the form of the complex exponen-

tial factors in (C.52) and (C.53), the integral (C.55) results in factors involving its Fourier

transform, E. The TE and TM mode terms from (C.55) are

Yimn mnJ Et-gimn ds - Kmn/k0ono
IRt dxdy(k-m+k-n) 

(C.56)

[fE k~ 2 I~k yn -y k 2E,~

Y[m ,d g2m , E *• " 2mn ds k K.nO °

dxdy(kxm+k)

[Exk Xm +_ykxmkyn + Ex n + Yn]

Summing the TE and TM modes:
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Y2pmn gpmn J E ,. as = El *._____
Kmnilokodxdy (C.58)

•EX (ko -](,yn) + XE y kxmkyn + YE x kxmkyn + EY9Y(k(O - m]

When this is written in dyadic notation, it is clear that the integral equations (3.29) and (B.55)

are the same.
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Appendix D

Periodic Boundary Conditions
for the Finite Element Problem

This appendix develops the method for applying periodic boundary conditions to a finite

element problem in one dimension. Consider the two functions f(x) and h(x) shown in Figure

Ih(x)I

Figure D1. Periodic Functions

DI, related by a linear operator equation Lf=h. Their magnitudes are periodic, repeating on

each interval , but each interval has a progressive phase shift relative to the next:

f(x +nd) = f(x) ej n (D. 1)

This may be regarded as a periodic boundary condition for the function on the interval I0,d].

For example purposes the method of weighted residuals will be used to produce a functional:

F(f) = <Lfw> - <h,w>

d (D.2)
I [Lc()w h hw*]dx

0

The functions f, h and w will be represented as sums of complex coefficients (fi , hi , and wi)

times scalar basis functions ti(x) where i may range from - o to + co. N + I of these expansion
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t 1 (x) tN(X)
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(x-0) NODE INDEX (x-d)

Figure D2. Expansion/Weighting Functions

functions are nonzero within the interval 10,d] as illustrated in Figure D2. f, and h, are the

values f(0) and h(0); and fN and hN are the values f(d) and h(d). The functions ti(x) are not

necessarily linear as shown, and do not necessarily extend over subintervals of the same length.

However, those in successive intervals must be replicas of each other with ti+N(x)=ti+I(x-d).

After expanding the functions in (D.2), the derivative of F with respect to each wj gives an

infinite tridiagonal system with matrix and right hand side entries

0o

sj' i =I LlItj (x) Itj (x) dx (D.3)

gJ I h (x) tj (x) dx (DA).4

-00a

For example, the equations pertaining to the nodes -l1,0, 1,2,..., ,N -! 3 are
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so,-I f- I + So'o A + so, IfA = go

Sofo A + + s1,2A2 = 1

s2 ,1 fA + s2 ,2 f 2  + s2 ,3 f3  = 92

(D.5)

SNI-,V-2N2-2 ÷ SN- INA-fN-I + SN- ,NfN = gN-I

SN,N.-I fN-I + SN, NfN + SN,N+I fN+I = gN

SN+I,NfN + SN÷INlJfN+I + SN+IN+2fN÷2 = gN+I

The periodicity conditions on the discrete coefficients f and g are

fi+N-l =fiej4' ; fj-N+l =fie-jý (D.6)
gi÷N-I = giejV; ; gi-N+i = gie-j(.

The matrix elements must also satisfy a periodicity condition. Since %+1 and ti+N are identical

for all i, it is clear that sj+I , j+1 = si+N, j+N. We can rewrite the system so that it only

involves the unknown values of f and known values of g within the interval [O,d):

SNI,N2fN_2e-J" + sNl',NV-lfN-le-j' + NN-I.NfI glV-e-jý (a)

sNN-NfN-je-JA + S1,1fA + S1,2 = g1  (b)

S2, 1fA + S2 ,2 A2  + S23 f3  = g2 (C)
(D.7)

SN-I,N-2fN-2 + SN-1,N-I fAN-I + SN-I,Nfte" = g9N-I (d)

SN,NIfN-I + s1,,1feye/ + S1 ,2 f 2 eJ'b gle)j' (e)

s2,1 fl ejI + S2 ,2 .f2el . + s 2 ,3 f 3 ej# = g2 ej•" ('f

Multiplying (b) and (c) by i0 and subtracting from (e) and (t). repsectively, eliminates the latter

three from the system. Similarly, multiplying (d) by ejA and subtracting from (a) eliminates (a).
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Continuing the process will eliminate all equations preceding (b) and succeeding (d) leaving only

a reduced system of N equations:

SN,N-IfN-Ie-J" + S1lf 1  + Sl, 2 f 2  = g1

S2 ,1 f + S2, 2 f 2  + S2 ,3 f 3  = 92 (D.8)

SN-I,N-2fN-2 + SN-1.N1fN-1 + SN-I,Nflej"t  = gN-1

Suppose that now the original problem geometry is truncated at the boundaries x=0 and

x=d, and the two ends are "wrapped" back on each other, as shown in Figure D3. Now nodes

t 1 (X) t N (X)

>1 x•\ // X

N-2 N-1 1 2 N-2 N-1 N 2 3

(x-O) NODE INDEX (x-d)

Figure D3. "Wrapped" Domain

1 and N are the same point, as are 2 and N+1, etc. Th n the inner product in (D.3) has new

terms for (ij)=(1,N-1),(N-1,l), and referring to (D.8) it is evident that

SI,N-I = SN,N-Ie-j (D9)

SNI ,1 SNI,Nejý

This system is no longer tridiagonal because the boundary terms have introduced new elements:
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$I, S1,2 0 0 . . . 0 0 SN,NI e

S2,1 S2 ,2 S2,3 0 * * * 0 0 0

0 S3,2 S 3 ,3 S3 ,4 * 0 0 0

tsI=(D. 10)

0 0 0 0 ' • * SN-2,N-2 SN-2,N-1 0

LSNI,NeiO 0 0 0 . . 5"N-I,N-2 SN-1,N-1 SN-I,N

If the original (infinite) matrix was Hermitian (adjoint), then SN,N1 = S*N1,N, and the new

system is adjoint as well. This indicates that periodic boundary conditions do not necessarily

cause an operator to become non-self-adjoint.

127



References

1. Stark, L., "Microwave Theory of Phased-Array Antennas - A Review," Proceedings of the
IEEE, 62, pp. 1661-1701, Dec. 1974.

2. Mailloux, R. J., "Phased Array Theory and Technology," Proceedings of the IEEE, 70, pp.
246-291, Mar. 1982.

3. Schell, A.C., "Trends in Phased Array Development," Phased Arrays 1985 Symposium
Proceedings, Vol. 1, Rome Air Development Center: Hanscom AFB, MA, RADC-TR-85-171,
pp. 1-6, Sep. 1985.

4. Lewis, L.R., M. Fasset and J. Hunt, "A Broadband Stripline Array Element," Proc. IEEE
Antennas & Propagation Int'l Symp., Atlanta GA, pp. 335-337, Jun. 1974.

5. Cooley, M.E., D.H. Schaubert, N.E. Buris and E.A. Urbanik, "Radiation and Scattering
Analysis of Infinite Arrays of Endfire Slot Antennas with a Ground Plane," IEEE Trans. Anten-
nas Propagat., AP-39, pp. 1615- 1625, Nov. 1991.

6. Edward, B. and D. Rees, "A Broadband Printed Dipole with Integrated Balun," Microwave
Journal, pp. 339-344, May 1987.

7. Bayard, J-P. R., M.E. Cooley an D.H. Schaubert, "Analysis of Infinite Arrays of Printed
Dipoles on Dielectric Sheets Perpendicular to a Ground Plane," IEEE Trans. Antennas Propagat.,
AP-39, pp. 1722-1732, Dec. 1991.

8. Bayard, J-P.R., M.E. Cooley, and D.H. Schaubert, "Effects of E-Plane Electric Walls on
Infinite Arrays of Dipoles Printed on Protruding Dielectric Substrates," IEEE Antennas and
Propagation 1992 International Symposium Digest, pp. 1410-1413, Jul. 1992.

9. Schuman, H.K., D.R. Pflug, and L.D. Thompson, "Infinite Phased Arrays of Arbitrarily Bent
Thin Wire Radiators," IEEE Trans. Antennas Propagat., AP-32, pp. 364-377, Apr. 1984.

10. Carver, K.R. and J.W. Mink, "Microstrip Antenna Technology," IEEE Trans. Antennas
Propagat., AP-29, pp. 2-24, Jan. 1981.

11. Herd, 1.S., "Full Wave Analysis of Proximity Coupled Rectangular Microstrip Antenna
Arrays," Electromagnetics, 11, pp. 21-46, Mar. 1991.

12. Jin, J-M. and V.V. Liepa, "Application of Hybrid Finite Element Method to Electromagnetic
Scattering from Coated Cylinders," IEEE Trans. Antennas Propagat., AP-36, pp. 50-54, Jan.
1988.

13. Boyse, W.E. and A.A. Seidl, "A Hybrid Finite Element and Moment Method for Elec-
tromagnetic Scattering from Inhomogeneous Objects," Conference on Applied Computational
Electromagnetics, Monterey, CA, pp. 160-169, Mar. 1991.

128



14. Yuan, Y., D.R. Lynch and J.W. Strohbehn, "Coupling of Finite Element and Moment
Methods for Electromagnetic Scattering from Inhomogeneous Objects," IEEE Trans. Antennas
Propagat., AP-38, pp. 386-393, Mar. 1990.

15. Morgan, M.A., "Principles of Finite Methods in Electromagnetic Scattering," Progress in
Electromagnetics Research: Finite Element and Finite Difference Methods in Electromagnetic
Scattering, pp. 1-68, New York, NY: Elsevier, 1990.

16. Gedney, S.D., J.F. Lee and R. Mittra, "A Combined FEM/MoM Approach to Analyze the
Plane Wave Diffraction by Arbitrary Gratings," IEEE Trans. Microwave Theory Tech., MTT-40,
pp. 363-370, Feb. 1992.

17. McGrath, D.T., "Hybrid Finite Element/Waveguide Mode Analysis of Passive RF Devices,"
RL-TR-93-, Hanscom AFB ,MA: USAF Rome Laboratory, Feb. 1993.

18. Strang, G. and G.J. Fix, An Analysis of the Finite Element Method, Englewood Cliffs, NJ:
Prentice-Hall, 1973.

19. Mur, G., "Finite-Element Modeling of Three-Dimensional Electromagnetic Fields in Inho-
mogeneous Media," Radio Science, 26, pp. 275-280, 1991.

20. Paulsen, K.D. and D.R. Lynch, "Elimination of Vector Parasites in Finite Element Maxwell
Solutions," IEEE Trans. Microwave Theory Tech., MTT-39, pp. 395-404, Mar. 1991.

21. Boyse, W.E., D.R. Lynch, K.D. Paulsen and G.N. Minerbo, "Nodal-Based Finite Element
Modeling of Maxwell's Equations," IEEE Trans. Antennas Propagat., AP-40, pp. 642-651, Jun.
1992.

22. Nedelec, J.C., "Mixed Finite Elements in R3," Numerische Mathematik, 35, pp. 315-341,
1980.

23. Barton, M.L. and Z.J. Cendes, "New Vector Finite Elements for Three-Dimensional Mag-
netic Field Computation," J. Appl. Phys. 61, pp. 3919-3921, Apr. 1987.

24. D'Angelo, J.D. and I.D. Mayergoyz, "Finite Element Methods for the Solution of RF
Radiation and Scattering Problems," Electromagnetics, 10, pp. 177-199, 1990.

25. K.D. Paulsen, W.E. Boyse and D.R. Lynch, "Continuous Potential Maxwell Solutions on
Nodal-Based Finite Elements," IEEE Trans. Antennas Propagat., AP-40, pp. 1192-1200, Oct.
1992.

26. Silvester, P.P. and R.L. Ferrari, Finite Elements for Electrical Engineers, 2nd. ed., Cam-
bridge Univ. Press, 1990.

27. Harrington, R.F. and J.R. Mautz, "A Generalized Network Formulation for Aperture
Problems," IEEE Trans. Antennas Propagat., AP-24, pp. 870-873, Nov. 1976.

129



28. Marcuvitz, N., Waveguide Handbook, New York: McGraw-Hill, 1951.

29. Amitay, N., V. Galindo and C. Wu, Theory and Analysis of Phased Array Antennas, New
York: Wiley, 1972.

30. Gaskill, J.D., Linear Systems, Fourier Transforms, and Optics, New York: John Wiley &
Sons, 1978.

31. IMSL, Inc., Users' Manual: IMSL MA TH/Library - FORTRAN Subroutines for Mathe-
matical Applications, Dec. 1989.

32. Anderson, E., et. al., LAPACK Users' Guide, Philadelphia, PA: SIAM, 1992.

33. Sarkar, T.K. and E. Arvas, "On a Class of Finite Step Iterative Methods (Conjugate Direc-
tions) for the Solution of an Operator Equation Arising in Electromagnetics," IEEE Trans.
Antennas Propagat., AP-33, pp. 1058-1066, Oct. 1985.

34. Potter, P.D. and A.C. Ludwig, "Beamshaping by Use of Higher Order Modes in Conical
Horns," Electromagnetic Horn Antennas, ed. A.W. Love, pp. 203-204, New York: IEEE Press,
1976.

35. Masterman, P.H. and P.J.B. Clarricoats, "Computer Field-Matching Solution of Waveguide
Transverse Discontinuities," Proc. lEE, 188, pp. 51-63, Jan. 1971.

36. Kowalski, G. and R. Pregla, "Dispersion Characteristics of Shielded Microstrips with Finite
Thickness," Arch. Elek. Ubertragung, 25, pp. 193-196, Apr. 1971.

37. Wheeler, H.A., "Transmission Line Properties of a Strip on a Dielectric Sheet on a Plane,"
IEEE Trans. Microwave Theory Tech., MTF-25, pp. 631-647, Aug. 1977.

38. Rowe, D.A. and B.Y. Lao, "Numerical Analysis of Shielded Coplanar Waveguide," IEEE
Trans. Microwave Theory Tech., MTT-31, pp. 911-915, Nov. 1983.

39. Webb, J.P., G.L. Maile, and R.L. Ferrari, "Finite Element Solution of Three Dimensional
Electromagnetic Problems," Proc. lEE, 130, pp. 153-159, Mar. 1983.

40. Diamond, B.L., "Resonance Phenomena in Waveguide Arrays," Proc. 1967 IEEE Antennas
Propagat. Int'l Symp., Ann Arbor, MI, pp. 110-115, Oct. 1967.

41. Lee, S-W and W. Jones, "On the Suppression of Radiation Nulls and Broadband Impedance
Matching of Rectangular Waveguide Phased Arrays," IEEE Trans. Antennas Propagat., AP-19,
pp. 41-51, Jan. 1971.

42. Amitay, N. and M.J. Gans, "Design of Rectangular Horn Arrays with Oversized Aperture
Elements," IEEE Trans. Antennas Propagat., AP-29, pp. 871-884, Nov. 1981.

130



43. Tang, R. and N.S. Wong, "Multimode Phased Array Element for Wide Scan Angle Im-
pedance Matching," Proc. IEEE, 56, pp. 1951-1959, Nov. 1968.

44. Structural Dynamics Research Corporation, "Integrated Design Engineering Analysis
Software Users' Manual," S.D.R.C., Milford, OH, 1990.

45. Pozar, D.M. and D.H. Schaubert, "Analysis of an Infinite Array of Rectangular Microstrip
Patches with Idealized Probe Feeds," IEEE Trans. Antennas Propagat., AP-32, pp. 1101-1107,
Oct. 1984.

46. Fenn, A.J., "Theoretical and Experimental Study of Monopole Phased Array Antennas,"
IEEE Trans. Antennas Propagat., AP-33, pp. 1131-1142, Oct. 1985.

47. Herper, J.C. and A. Hessel, "Performance of X/4 Monopole in a Phased Array," Proc. 1975
Antennas and Propagation Int'l Symp., Urbana, IL, Jun. 1975.

48. Hammerstad, E.O., "Equations for Microstrip Circuit Design," Proc. 5th European Micro-
waves Conf., Hamburg, pp. 268-272, 1975.

49. Gupta, K.C., R. Gharg, and R. Chadha, Computer-Aided Design of Microwave Circuits,
Dedham, MA: Artech House, 1981.

50. Schaubert, D.H., "Endfire Slotline Antennas," Proc. JINA '90, 253-265, Nov. 1990.

St. Choung, Y.H. and C.C. Chen, "44 GHz Slotline Phased Array Antenna," Proc. 1989
Antennas and Propagation Int'l Symp., pp. 1730-1733.

52. Ho, T.Q. and S.M. Hart, "A Broad-Band Coplanar Waveguide to Slotline Transition," IEEE
Microwave and Guided Wave Letters, 2, pp. 415-416, Oct. 1992.

53. Jin, J-M. and J.L. Volakis, "A Hybrid Finite Element Method for Scattering and Radiation
by Microstrip Patch Antennas and Arrays Residing in a Cavity," IEEE Trans. Antennas Prop-
agat, AP-39, pp. 1598-1604, Nov. 1991.

54. Mikhlin, S.G., Variational Methods in Mathematical Physics, New York: MacMillan, 1974.

55. Harrington, R.F., lime-Harmonic Electromagnetic Fields, New York: McGraw-Hill, 1961.

56. Naylor, A.W. and G.R. Sell, Linear Operator Theory in Engineering and Science, New
York: Springer-Verlag, 1982.

57. Stroud, A.H. and D. Secrest, Gaussian Quadrature Formulas, New York: Prentice-Hall,
1966.

58. Abramowitz, M. and I.E. Stegun, Handbook of Mathematical Functions, National Bureau
of Standards, 1972.

131



59. Collin, R.E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, 1991.

60. Goodman, J.W., Introduction to Fourier Optics, McGraw-Hill, 1968.

61. Brillouin, L., Wave Propagation in Periodic Structures, New York: Dover, 1953.

62. Mittra, R., C.H. Chan and T. Cwik, "Techniques for Analyzing Frequency Selective Surfac-
es--A Review, IEEE Proceedings, 76, pp. 1593-1615, Dec, 1988.

132



Vita

Major Daniel Timothy McGrath was born in Tampa, Florida on October 24, 1956. He

graduated from William J. Palmer High School in Colorado Springs, Colorado in 1974. After

attending the University of Colorado at Colorado Springs for one year, he entered the United

States Air Force Academy, graduating in May, 1979 with the Bachelor of Science in Electrical

Engineering degree. He then worked for two years in the Air Force Armament Laboratory at

Eglin AFB, Florida in the development of sensors, signal processing and pattern recognition for

smart munitions. He entered the Air Force Institute of Technology (AFIT) in June 1981 and

graduated in December, 1982 with the Master of Science in Electrical Engineering. His next

assignment was in the Antennas Division of Rome Air Development Center, Hanscom AFB,

Massachusetts, where he participated in the development of new designs and concepts for phased

array and lens antennas. He entered the Doctor of Science program at AFIT in July, 1990.

After leaving AFIT he will join the Advanced Weapons and Survivability Directorate of Phillips

Laboratory, Kirtland AFB, New Mexico.

133



June 1993 Doctoral Dissertation

PHASED ARRAY ANTENNA ANALYSIS USING
HYBRID FINITE ELEMENT METHODS

Daniel T. McGrath, Major, USAF

Air Force Institute of Technology AFIT/DS/ENG/93-4
Wright-Patterson AFB, OH 45433-6583

Rome Laboratory
RL/ERA
Hanscom AFB, MA 01731

Approved for Public Release;
Distribution Unlimited

This research in computational electromagnetics developed a new
method for predicting the near-field mutual coupling effects in
phased array antennas, using the finite element method (FEM) in com-
bination with integral equations. Accurate feed modeling is accom-
plished by enforcing continuity between the FEM solution and an arbi-
trary number of waveguide modes across a ground plane aperture. A
periodic integral equation is imposed above the antenna's physical
structure in order to enforce the radiation condition and to confine
the analysis to an array unit cell. The electric field is expanded
in terms of vector finite elements, and Galerkin's method is used to
write the problem as a matrix equation. A general-purpose computer
code was developed and validated by comparing its results to pub-
lished data for several array types. Its versatility was demonstrat-
ed with predictions of the scanning properties of arrays of printed
dipoles and printed flared notches.

Phased Arrays Finite Element Analysis
Method of Moments Electromagnetic Radiation
Broadband Antennas Microwave Components

Unclassified Unclassified Unclassified UL


